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The talk is devoted to a construction that takes a homogeneous
polynomial system in an n-dimensional space to a solution of the
heat equation, in terms of a solution of an ordinary differential
equation of order (n+1).

The theory of elliptic and multidimensional sigma-functions gives
us a big amount of such dynamical systems.

Using the Cole-Hopf transformation and our solutions of the heat
equation, we obtain the corresponding solutions of the Burgers
equation.



In the case of the elliptic sigma function our construction reduces
the solution of the heat equation to the solution of an ordinary
differential equation of the third order, namely the Chazy equation.

We describe a deformation of the Weierstrass sigma function
such that for this function our construction gives the famous
Chazy family of third order differential equations.

Results presented in the talk were obtained in recent joint works
with E. Yu. Bunkova.

Main definitions will be introduced during the talk.



The standard Weierstrass model for a plane elliptic curve is

V={(\pw eC?: p? =141 - g\ — g3}. (1)

The discriminant of this curve is A = g3 — 27g%.
The curve is non-degenerate when A # 0.
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where % and % are the basic differentials

and a; are the basic cycles on the curve such that
1
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A plane non-degenerate algebraic curve V defines a lattice I C C
of rank 2 generated by 2wi, 2wo, with Im—f > 0.

w
w
An elliptic function is a meromorphic function on C such that

fz42wp) = f(2), k=12

that is it can be considered
as a function on a complex torus T = C/T.

The torus T is known as the Jacobian of the curve V.



The Weierstrass p-function is the unique elliptic function
o(z) = p(z; g2,93) on C with poles only in lattice points

. 1 .
such that zh_% (go(z) — 2—2) = 0.

It is an even function and all its poles are double poles.
It defines a uniformization of the standard elliptic curve:

0 (2)% = 4p(2)> — gop(2) — g3.

The function u(z) = 2p(z) is a 2-periodic solution of the stationary
KdV equation

/ /
u" = 6un’.



The Weierstrass (-function is the odd meromorphic function
((z) = ((#; g2,93) such that

('(2) = —p(2) and I|m ( C(z) — _)

The periodic properties are

C(z 4+ 2wg) = ((2) + 2m,
and we have . = ((wg), k= 1,2.



The Weierstrass-Stickelberger equation is

(C(21) + ¢(22) + ¢(23))? = p(21) + p(22) + p(23)
for 21+ 20 + 23 = 0.

This functional equation led to exact results

for a quantum one-dimensional many-body problem
of n identical particles with pair interactions.

It is the problem of solving the Schrddinger equation

— AWy +UWqy = EgWg, Where U = Z u(CBZ — wj)
1<i<y<n
see F. Calogero, One-dimensional many-body problems with pair
interactions whose exact ground-state wave function is of product
type, Lett. Nuovo Cimento 13 507-511, 1975
B. Sutherland, Exact ground-state wave function for
a one-dimensional plasma, Phys. Rev. Lett. 34 1083-1085, 1975.
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The Weierstrass o-function is the entire odd meromorphic
function o(z) = o(z; g, g3) such that

(Ino()) =¢(=)  and lim ("(z>> —1.

z—0 Z

The periodic properties are

o(z 4+ 2wr) = —o(z) exp (277k(z + wk)), Ek=1,2.



There is the equation

J(Zla?_zf)ng((;l); 2) — () - p(21).

This functional equation led to integration of the equation

2—8—2—|—2§: (x —x;(t)) | W =0
ot Oz? izlp ' o

see I.M. Krichever,

Elliptic solutions of the Kadomtsev-Petviashvili equation
and integrable systems of particles,

Functional Analysis and Its Applications, 1980, 14:4, 282—290.



In the case A = 0 one can find ~ such that
g2 = 37*, g3 = 25, Then

, — = —exp(—= sin vz,
o(z; 37 57 ) » 0(67 z<) sinyz
4 4 8
C(z; =" —76)——7 z 4+ yctgryz,
4 4 8 . o, 1 1
o= 37 o7 ) =77 (Sln’yz)Q)

In the general case there exists a smooth parameter 6 such that
go — %74, g3 — %76 for 6 — 0.

10



Consider the fields on C2

9 9 5 1,8
lo =4g9g0— +6g9g3—, Ilo=06g3— + =95—.
dgo g3 dgr ' 372893

We have [lg,lo] = 2lp, lpA =124, 1A =0, (lg,lo)=3A.

Let 79 be the parameter on the family of curves defined
by the dynamical system (Ig = 5%)

g5 = 4g>, g3 = 6g3.
Then go(19) = ¢g2(0)e*0, g3(79) = g3(0)eb70.
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Let 7> be the parameter on the family of curves defined
by the dynamical system (i, = %)
1
go =693, g3 = 595-
It is a homogeneous polynomial dynamical system with
degm = 4, deg g = —4k, k= 2,3.
Then
1
g2(m2) = 3p(12 + d; 0, b3), g3(m2) = 5@’(72 +d; 0,b3),
where b3 is defined by the initial data as b3 = %92(0)3—493(0)2,
and d is the solution of the compatible system of equations

o(d; 0,b3) = 392(0), ¢(d; 0,b3) = 2¢3(0).
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Let

9 9 8 1,0
lo =4g>— + 6g93— lo =6g93— + 3925
992 dg3’ dgo 093
0 192 1 o
Hy=2——1, H I 7
0 Z82 2= 2 0z2 + 92
Qo = Hp — lp, Qo = Hpy — 1o,

The Weierstrass theorem.
The operators Qg and o annihilate the sigma-function:

Qoo(z; 92,93) =0, Q20(z; g2,93) = 0.



Theorem. The function ¢ (z,t¢) such that

P(z,t) = "D HrO 5 (4 6o (1), g3(t)) (3)

for some functions r(t), h(t), go(t) and g3(t) satisfies
the heat equation

%, 1 92
a@b(zat) = E@QP(ZJ) (4)

if and only if the functions r(t), h(t), go(t) and g3(t) satisfy
the homogeneous polynomial dynamical system
in C* with coordinates (h,r, go,g3), degh = —4, degr = O:

1 /

R = 2K — 92 r' = 3h, (5)

/ / 1 2
g> = 6g3 + 8hygo, 93 = 395 + 12hgs3. (6)
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Theorem. The functions r(t), h(t), g>(t) and g3(t) satisfy the
dynamical system (5) - (6) if and only if h(t) satisfies
the Chazy equation

K" — 24hh" + 36(h)?% =0, (7)

and

go = —24(K —2Rr?), g3 = -4 —12Wh+ 16R3), ' = 3h.

For initial data

ho = h(0), hi="hr'(0), hy=hr"(0)

there exists a unique solution of the Chazy equation (7).

Corollary. For given (hg, h1,hs) there exists a unique
up to a factor solution of the heat equation (4) of the form (3).
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Example. The function

Sin
W(z,t) = exp(—2~2t) 72, ~ = const
Y

IS a periodic odd function of z.
It is the classical solution of the heat equation.

In this case we have

1 1
r = ——nyt, h = 2

2 6 3

——7 > g92=37, 93 =77 -
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Example.

For the classical solution

¢(27t) — w*(zat) T w*(_zat%

where
1 (z —a)?
1) = —exp | — :
Pu(z0) Vit P ( 2t >
which is decreasing when z — +oo, we have v = —* and
— 3t a? 4q% 8 a®
h = , = In _ — = ——F, = -
612 " ( ;) 2= 3@ 93T o746
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Let ¢¥(z,t) be an odd function of z regular at z = 0.

Such a function can be uniquely represented in the form
Wiz, t) = DO ), (8)

where the function ¢(z,t) in the vicinity of z = 0 is given by the

series
2k—+1

¢(z,t) = z + ]§2¢k(t)(2k O

18



Theorem. The function ¥(z,t) in the vicinity of z = 0 is a
solution to the heat equation

o0 _ 10%
ot 2022
if and only if ¥ = 3h and the function ¢(z,t) is a solution to
0
% _ Hop + 2hH o,
ot
where
102 1 5 0 ) o
Moo = (305 + pqui?) 6 Hod = (o106 u= —240/~212)

Using this theorem we search for solutions of the form (8) of the
heat equation.

19



Put degz = 2, degt = 4 and

br(t) = Pp(x2(t),. .., vp41(t))
where &, are homogeneous polynomials of degree —4k with
degxq = —4q.

With such assumptions we have

HO¢ — _5O¢7

where

250 — (—4k)£ljk—.
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Consider in C™ with coordinates (zo,...,T,41),
some homogeneous dynamical system of r

Oz, ( )
— = T, ..., T :
5 Pk4+1\L2 n+1

where deg p; = —4q, and set

0
o2 = > prt1(@2,... ,$n+1)a—¢-
T},

deg x4

—4q
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T heorem. The function

D(z;x2,...,Tpy1) =2+ > Do,
k>0

gives a solution to the equation

Hod = 6o
if and only if

1

Po(x,..., Tpt1) = —Eu,

and

0
Prt1 = 25

T

z2k—|—1
Tt 1) (o T,
9
Py =2y,

1
¢k+§k)(2k—|— 1)¢2CD/<:—17 k> 2.

22
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Let u = x». Thus for the homogeneous system we get

1
Dy = ——xo,
2 2372

and the function (9) gives a solution to the equations
HodP = —igP, Hod = 6P

where

0

0
200 = — Z4k€vka—%, 02 = prt1(zo,. .. ,wn+1)a—%-
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In the equation
0
aqb = Hop + 2h'Hpo

for the ansatz

¢(z,t) = P(z,21(t), ..., xp41(1))

we have
n+tl oxy. oD
_ 4hk ) = 0.
kz::z(at —prt+1(@2, -, Tpg1) %) D

In the case of a non-degenerate function &, the functions g—;';
are lineary independant and we have

awk

ot — Pk—|—1(3’32> oo »an—l—l) + 4khxy.
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Corollary.

In the space C*T! with the coordinates x1 = h, x2, ...x,11 We
get the homogeneous polynomial dynamical system

9, > 1

—h = 2h° — —x»,

ot 24"

o

axk:pk—l—l(mQa"wxn—l—l)+4khxk7 k=2,,n—|—1
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Applications of general construction.

Example n = 2.
Consider the homogeneous dynamical system:

Oxo orz 1 5
—— = Ox3, — = —x5.
ot ot 3
We have (z4)? = 323 — 9b3 for some constant bg,
where degr;, = —4k, degbz = —24. Thus for some constant d

1
rp = 3p(T+d;0,b3), x3= 5@'(7 + d; 0, b3).

We get the dynamical system
0xo oxz 1 5 Oh > 1

2 — 6 8hzy, o3 =_ 12hes, - =2h2 - 3,
ot 3 8hra, 5 m = grat 2hes, 2472

which leads to the Chazy equation:
K" — 24hk" 4+ 36(K)% = 0.
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Example n = 3. Consider the homogeneous dynamical system:

Oxo Oorz 1 5 Ox4
—= =6x3, — = x5+ 2exq, — =2 :
oT 3 oT 3x2 e oT 72T

Here € and ~ are scalars and dege = deg~ = 0.
From this system we have

3 1
= d; eb>,b3), =
1_|_€7KJ(T+ eb2,b3), 3 >+ 209

where by, b3z and d are some constants. We get the system

o' (T + d; eba, b3)

L2

0xo orz 1 5

5 z3 + 8hxo 5 372 + 2ex4 + 3
8334 8h 2 1
Y Yr2x3 + T4 5 YL

which leads to the equation:
C(h) — 16hC(h) — 96~e(2h% — K (K" — 12k’ + 16AK3) = 0.

Here C(h) = k"' — 24hh" + 36(h))2.
27



The equation
C(h) — 16hC(h) — 96~e(2h? — h')(h" — 12hh + 16R3) = 0
with C(h) = b — 24hh" + 36(K’)? is equivalient to the equation

C(h) — 16hC(h) =0
with
C(h) = C(h) + 48~e ((h’)2 — 4K K2 + 4h4) .

Corollary.
Let y(t) = 12h(t), @ = —gve. Then

12C(h) = y" — 2yy” + 3(v')?% — a6y’ — y?)?.

28



In the study of third order ordinary differential equations having
the Painlevé property Chazy was led to the remarkable family
of equations

y" = 2yy" — 3(y)?% + a(6y — y?)?,
see J. Chazy,
Sur les équations différentielles du troisieme ordre et d’ordre

supérieur dont l'intégrale générale a ses points critiques fixes,
Acta Math. 34, 317-385, 1911.

The importance of the Chazy family in the modern theory of
integrable systems is discribed in

Clarkson, P.A., and Olver, P.J., Symmetry and the Chazy equation,
J. Diff. Eq. 124, 225-246, 1996.

29



T he solutions of the Burgers equation.

Consider the Burgers equation

1
(% _I_ VVy — E'Uzz. (10)

The Cole-Hopf transform of a function ¥ (z,t) is

dlny(z,t)

U(Z7t) — - 82’

There is the identity

1 o _ 3
vy + v, — E'Uzz — _82 (% ¢2w2z> .

Corollary. Let ¢¥(z,t) be a solution of the heat equation.
Then v(z,t) is a solution of the Burgers equation (10).
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The elliptic case.
Let

W(z,t) = D=5 (5 g5(1), g3(1))
as before be the solution of the heat equation

s, 1 92
aw(z,t) = E@w(z,t)
Theorem. The function
O |
oz ) = =T ED = _2h(1)z — (= 9201, 93(0))

gives a solution of the Burgers equation,
where h(t) is the solution of the Chazy equation

K" — 24nh" + 36(K)?% =0,
and go, g3, h are given by
go = 24(2h° — k'), g3 = —4(h" — 12K h + 164K3).

31



Corollary.
Fix any hg, g2.0, 93,0- A solution of the Chazy equation with

1 1 1
h(to) = ho,  h'(to) = —,920+2h5,  h"(to) = =930~ 5hog2,0+8h3
provides a solution v(z,t) of the Burgers equation with
the initial wave v(z,tg) = —2hgz — ((z; 9270,9370).

For the classical periodic of z solution of the heat equation
we have a stationary solution of the Burgers equation

v(z,t) = —vyctg(yz), v = const.

32



Corollary. For the solution of the heat equation

1 (z — a)?
Px(z,t) = %exp(— 7 )

we get the non-stationary solution of the Burgers equation

v(z,t) = %(z —a).

Corollary. For the solution of the heat equation

2—|—CL2

w(z,t)=\/%exp(—z > )(exp(%)—exp(_fz))

we get the non-stationary solution of the Burgers equation

1
v(z,t) = ;(z — acth %)

33



Properties of the solutions.
Let v(z,t) be a solution of the Burgers equation discribed before.
It is an odd function of z and

v(z + 2w (t),t) = v(z,t) + 2u(wi(t),t), k=1,2.

General lemma. Let h(t) be a solution of the Chazy equation.
The function

- 1 at + b B C
TR = 2" <ct T d> 2(ct + d)’ e+ 1d] > O,

satisfies the Chazy equation if and only if (ad—bc—1)(ad—bc) = O.

Corollary. The solution (Tv)(z,t) of the Burgers equation
corresponding to (Th)(t) is defined.
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For h(t) =0 we get go = g3 = 0 and v(z,t) = —= is a solution of

the stationary Burgers equation vv, = 3v...

Example. For h(t) = 0 we have
C

2(ct +d)
We get go = g3 = 0 and the solution of the Burgers equation

(Th)(t) = —

(Tv)(z,t) = ———I— (CH_d)

35



For h(t) = k = const we get go = 48k?, g3 = —64k3,
and the solution of the stationary Burgers equation

v(z,t) = —v/—6kctg(v/—6kz).

(Ct_llfd)Q — 2(ctc—|-d) where h(t) = k = const:

= k3
o  BO= e

whence A = 0, and for ~(t) = (ﬁ) a solution of the Burgers
equation is

Example. For (Th)(t) =

go(t) = 48

(Tv)(z,t) =~ (\/C6_kz — cth 72)
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