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The talk is devoted to a construction that takes a homogeneous

polynomial system in an n-dimensional space to a solution of the

heat equation, in terms of a solution of an ordinary di�erential

equation of order (n+ 1).

The theory of elliptic and multidimensional sigma-functions gives

us a big amount of such dynamical systems.

Using the Cole-Hopf transformation and our solutions of the heat

equation, we obtain the corresponding solutions of the Burgers

equation.

1



In the case of the elliptic sigma function our construction reduces

the solution of the heat equation to the solution of an ordinary

di�erential equation of the third order, namely the Chazy equation.

We describe a deformation of the Weierstrass sigma function

such that for this function our construction gives the famous

Chazy family of third order di�erential equations.

Results presented in the talk were obtained in recent joint works

with E. Yu. Bunkova.

Main de�nitions will be introduced during the talk.
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The standard Weierstrass model for a plane elliptic curve is

V = {(λ, µ) ∈ C2 : µ2 = 4λ3 − g2λ− g3}. (1)

The discriminant of this curve is ∆ = g3
2 − 27g2

3.

The curve is non-degenerate when ∆ 6= 0.

Set

2ωk =
∮
ak

dλ

µ
, 2ηk = −

∮
ak

λdλ

µ
, k = 1,2, (2)

where dλ
µ and λdλ

µ are the basic di�erentials

and ak are the basic cycles on the curve such that

η1ω2 − ω1η2 =
πi

2
.
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A plane non-degenerate algebraic curve V de�nes a lattice Γ ⊂ C
of rank 2 generated by 2ω1, 2ω2, with Imω2

ω1
> 0.

An elliptic function is a meromorphic function on C such that

f(z + 2ωk) = f(z), k = 1,2,

that is it can be considered

as a function on a complex torus T = C/Γ.

The torus T is known as the Jacobian of the curve V .
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The Weierstrass ℘-function is the unique elliptic function

℘(z) = ℘(z; g2, g3) on C with poles only in lattice points

such that lim
z→0

(
℘(z)− 1

z2

)
= 0.

It is an even function and all its poles are double poles.

It de�nes a uniformization of the standard elliptic curve:

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.

The function u(z) = 2℘(z) is a 2-periodic solution of the stationary

KdV equation

u′′′ = 6uu′.
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The Weierstrass ζ-function is the odd meromorphic function

ζ(z) = ζ(z; g2, g3) such that

ζ′(z) = −℘(z) and lim
z→0

(
ζ(z)−

1

z

)
= 0.

The periodic properties are

ζ(z + 2ωk) = ζ(z) + 2ηk,

and we have ηk = ζ(ωk), k = 1,2.
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The Weierstrass-Stickelberger equation is

(ζ(z1) + ζ(z2) + ζ(z3))2 = ℘(z1) + ℘(z2) + ℘(z3)

for z1 + z2 + z3 = 0.

This functional equation led to exact results

for a quantum one-dimensional many-body problem

of n identical particles with pair interactions.

It is the problem of solving the Schr�odinger equation

−∆Ψ0 + UΨ0 = E0Ψ0, where U =
∑

16i<j6n
u(xi − xj).

see F. Calogero, One-dimensional many-body problems with pair

interactions whose exact ground-state wave function is of product

type, Lett. Nuovo Cimento 13 507-511, 1975

B. Sutherland, Exact ground-state wave function for

a one-dimensional plasma, Phys. Rev. Lett. 34 1083-1085, 1975.
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The Weierstrass σ-function is the entire odd meromorphic

function σ(z) = σ(z; g2, g3) such that(
lnσ(z)

)′
= ζ(z) and lim

z→0

(
σ(z)

z

)
= 1.

The periodic properties are

σ(z + 2ωk) = −σ(z) exp
(
2ηk(z + ωk)

)
, k = 1,2.
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There is the equation

σ(z1 + z2)σ(z1 − z2)

σ(z1)2σ(z2)2
= ℘(z2)− ℘(z1).

This functional equation led to integration of the equation ∂
∂t
−

∂2

∂x2
+ 2

n∑
i=1

℘(x− xi(t))

Ψ = 0,

see I.M. Krichever,

Elliptic solutions of the Kadomtsev-Petviashvili equation

and integrable systems of particles,

Functional Analysis and Its Applications, 1980, 14:4, 282�290.
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In the case ∆ = 0 one can �nd γ such that

g2 = 4
3γ

4, g3 = 8
27γ

6. Then

σ(z;
4

3
γ4,

8

27
γ6) =

1

γ
exp(

1

6
γ2z2) sin γz,

ζ(z;
4

3
γ4,

8

27
γ6) =

1

3
γ2z + γ ctg γz,

℘(z;
4

3
γ4,

8

27
γ6) = γ2(−

1

3
+

1

(sin γz)2
).

In the general case there exists a smooth parameter δ such that

g2 → 4
3γ

4, g3 → 8
27γ

6 for δ → 0.
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Consider the �elds on C2

l0 = 4g2
∂

∂g2
+ 6g3

∂

∂g3
, l2 = 6g3

∂

∂g2
+

1

3
g2

2
∂

∂g3
.

We have [l0, l2] = 2l2, l0∆ = 12∆, l2∆ = 0, 〈l0, l2〉 = 4
3∆.

Let τ0 be the parameter on the family of curves de�ned

by the dynamical system (l0 = ∂
∂τ0

)

g′2 = 4g2, g′3 = 6g3.

Then g2(τ0) = g2(0)e4τ0, g3(τ0) = g3(0)e6τ0.
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Let τ2 be the parameter on the family of curves de�ned

by the dynamical system (l2 = ∂
∂τ2

)

g′2 = 6g3, g′3 =
1

3
g2

2.

It is a homogeneous polynomial dynamical system with

deg τ2 = 4, deg gk = −4k, k = 2,3.

Then

g2(τ2) = 3℘(τ2 + d; 0, b3), g3(τ2) =
1

2
℘′(τ2 + d; 0, b3),

where b3 is de�ned by the initial data as b3 = 4
27g2(0)3−4g3(0)2,

and d is the solution of the compatible system of equations

℘(d; 0, b3) = 1
3g2(0), ℘′(d; 0, b3) = 2g3(0).
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Let

l0 = 4g2
∂

∂g2
+ 6g3

∂

∂g3
, l2 = 6g3

∂

∂g2
+

1

3
g2

2
∂

∂g3
,

H0 = z
∂

∂z
− 1, H2 =

1

2

∂2

∂z2
+

1

24
g2z

2,

Q0 = H0 − l0, Q2 = H2 − l2.

The Weierstrass theorem.

The operators Q0 and Q2 annihilate the sigma-function:

Q0σ(z; g2, g3) = 0, Q2σ(z; g2, g3) = 0.
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Theorem. The function ψ(z, t) such that

ψ(z, t) = eh(t)z2+r(t)σ (z, g2(t), g3(t)) (3)

for some functions r(t), h(t), g2(t) and g3(t) satis�es

the heat equation

∂

∂t
ψ(z, t) =

1

2

∂2

∂z2
ψ(z, t) (4)

if and only if the functions r(t), h(t), g2(t) and g3(t) satisfy

the homogeneous polynomial dynamical system

in C4 with coordinates (h, r, g2, g3), degh = −4, deg r = 0:

h′ = 2h2 −
1

24
g2, r′ = 3h, (5)

g′2 = 6g3 + 8hg2, g′3 =
1

3
g2

2 + 12hg3. (6)
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Theorem. The functions r(t), h(t), g2(t) and g3(t) satisfy the

dynamical system (5) - (6) if and only if h(t) satis�es

the Chazy equation

h′′′ − 24hh′′+ 36(h′)2 = 0, (7)

and

g2 = −24(h′ − 2h2), g3 = −4(h′′ − 12h′h+ 16h3), r′ = 3h.

For initial data

h0 = h(0), h1 = h′(0), h2 = h′′(0)

there exists a unique solution of the Chazy equation (7).

Corollary. For given (h0, h1, h2) there exists a unique

up to a factor solution of the heat equation (4) of the form (3).
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Example. The function

ψ(z, t) = exp(−2γ2t)
sin γz

γ
, γ = const

is a periodic odd function of z.

It is the classical solution of the heat equation.

In this case we have

r = −
1

2
γ2t, h = −

1

6
γ2, g2 =

4

3
γ4, g3 =

8

27
γ6.
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Example.

For the classical solution

ψ(z, t) = ψ∗(z, t)− ψ∗(−z, t),

where

ψ∗(z, t) =
1√
t

exp

(
−

(z − a)2

2t

)
,

which is decreasing when z → ±∞, we have γ = −iat and

h =
a2 − 3t

6t2
, r = ln(

2a

t3
)−

a2

2t
, g2 =

4

3

a4

t4
, g3 = −

8

27

a6

t6
.
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Let ψ(z, t) be an odd function of z regular at z = 0.

Such a function can be uniquely represented in the form

ψ(z, t) = eh(t)z2+r(t)φ(z, t), (8)

where the function φ(z, t) in the vicinity of z = 0 is given by the

series

φ(z, t) = z +
∑
k>2

φk(t)
z2k+1

(2k + 1)!
.
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Theorem. The function ψ(z, t) in the vicinity of z = 0 is a

solution to the heat equation

∂ψ

∂t
=

1

2

∂2ψ

∂z2

if and only if r′ = 3h and the function φ(z, t) is a solution to

∂φ

∂t
= H2φ+ 2hH0φ,

where

H2φ =

(
1

2

∂2

∂z2
+

1

24
uz2

)
φ, H0φ = (z

∂

∂z
−1)φ, u = −24(h′−2h2).

Using this theorem we search for solutions of the form (8) of the

heat equation.
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Put deg z = 2, deg t = 4 and

φk(t) = Φk(x2(t), . . . , xn+1(t))

where Φk are homogeneous polynomials of degree −4k with

degxq = −4q.

With such assumptions we have

H0φ = −δ0φ,

where

2δ0 =
n+1∑
k=2

(−4k)xk
∂

∂xk
.
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Consider in Cn with coordinates (x2, . . . , xn+1), degxq = −4q

some homogeneous dynamical system of τ

∂xk
∂τ

= pk+1(x2, . . . , xn+1),

where deg pq = −4q, and set

δ2φ =
∑

pk+1(x2, . . . , xn+1)
∂

∂xk
φ.
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Theorem. The function

Φ(z;x2, . . . , xn+1) = z +
∑
k>2

Φk(x2, . . . , xn+1)
z2k+1

(2k + 1)!
(9)

gives a solution to the equation

H2Φ = δ2Φ

if and only if

Φ2(x2, . . . , xn+1) = −
1

2
u, Φ3 = 2

∂

∂τ
Φ2,

and

Φk+1 = 2
∂

∂τ
Φk +

1

3
k(2k + 1)Φ2Φk−1, k > 2.
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Let u = x2. Thus for the homogeneous system we get

Φ2 = −
1

2
x2,

and the function (9) gives a solution to the equations

H0Φ = −δ0Φ, H2Φ = δ2Φ

where

2δ0 = −
∑

4kxk
∂

∂xk
, δ2 =

∑
pk+1(x2, . . . , xn+1)

∂

∂xk
.
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In the equation

∂

∂t
φ = H2φ+ 2hH0φ

for the ansatz

φ(z, t) = Φ(z, x1(t), . . . , xn+1(t))

we have

n+1∑
k=2

(
∂xk
∂t
− pk+1(x2, . . . , xn+1)− 4hkxk

)
∂Φ

∂xk
= 0.

In the case of a non-degenerate function Φ, the functions ∂Φ
∂xk

are lineary independant and we have

∂xk
∂t

= pk+1(x2, . . . , xn+1) + 4khxk.
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Corollary.

In the space Cn+1 with the coordinates x1 = h, x2, . . . xn+1 we

get the homogeneous polynomial dynamical system

∂

∂t
h = 2h2 −

1

24
x2,

∂

∂t
xk = pk+1(x2, . . . , xn+1) + 4khxk, k = 2, . . . , n+ 1.
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Applications of general construction.

Example n = 2.
Consider the homogeneous dynamical system:

∂x2

∂τ
= 6x3,

∂x3

∂τ
=

1

3
x2

2.

We have (x′2)2 = 4
3x

3
2 − 9b3 for some constant b3,

where degxk = −4k, deg b3 = −24. Thus for some constant d

x2 = 3℘(τ + d; 0, b3), x3 =
1

2
℘′(τ + d; 0, b3).

We get the dynamical system

∂x2

∂t
= 6x3 + 8hx2,

∂x3

∂t
=

1

3
x2

2 + 12hx3,
∂h

∂t
= 2h2 −

1

24
x2.

which leads to the Chazy equation:

h′′′ − 24hh′′+ 36(h′)2 = 0.
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Example n = 3. Consider the homogeneous dynamical system:

∂x2

∂τ
= 6x3,

∂x3

∂τ
=

1

3
x2

2 + 2εx4,
∂x4

∂τ
= 2γx2x3.

Here ε and γ are scalars and deg ε = deg γ = 0.
From this system we have

x2 =
3

1 + εγ
℘(τ + d; εb2, b3), x3 =

1

2 + 2εγ
℘′(τ + d; εb2, b3)

where b2, b3 and d are some constants. We get the system

∂x2

∂t
= 6x3 + 8hx2,

∂x3

∂t
=

1

3
x2

2 + 2εx4 + 12hx3,

∂x4

∂t
= 2γx2x3 + 16hx4,

∂h

∂t
= 2h2 −

1

24
x2,

which leads to the equation:

C(h)′ − 16hC(h)− 96γε(2h2 − h′)(h′′ − 12hh′+ 16h3) = 0.

Here C(h) = h′′′ − 24hh′′+ 36(h′)2.
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The equation

C(h)′ − 16hC(h)− 96γε(2h2 − h′)(h′′ − 12hh′+ 16h3) = 0

with C(h) = h′′′ − 24hh′′+ 36(h′)2 is equivalient to the equation

Ĉ(h)′ − 16hĈ(h) = 0

with

Ĉ(h) = C(h) + 48γε
(
(h′)2 − 4h′h2 + 4h4

)
.

Corollary.

Let y(t) = 12h(t), α = −1
9γε. Then

12Ĉ(h) = y′′′ − 2yy′′+ 3(y′)2 − α(6y′ − y2)2.
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In the study of third order ordinary di�erential equations having

the Painlev�e property Chazy was led to the remarkable family

of equations

y′′′ = 2yy′′ − 3(y′)2 + α(6y′ − y2)2,

see J. Chazy,

Sur les �equations di��erentielles du troisi�eme ordre et d'ordre

sup�erieur dont l'int�egrale g�en�erale a ses points critiques �xes,

Acta Math. 34, 317-385, 1911.

The importance of the Chazy family in the modern theory of

integrable systems is discribed in

Clarkson, P.A., and Olver, P.J., Symmetry and the Chazy equation,

J. Di�. Eq. 124, 225-246, 1996.
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The solutions of the Burgers equation.

Consider the Burgers equation

vt + vvz =
1

2
vzz. (10)

The Cole-Hopf transform of a function ψ(z, t) is

v(z, t) = −
∂ lnψ(z, t)

∂z
.

There is the identity

vt + vvz −
1

2
vzz = −

∂

∂z

ψt − 1
2ψzz

ψ

 .

Corollary. Let ψ(z, t) be a solution of the heat equation.

Then v(z, t) is a solution of the Burgers equation (10).
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The elliptic case.

Let

ψ(z, t) = eh(t)z2−r(t)σ (z, g2(t), g3(t)) ,

as before be the solution of the heat equation

∂

∂t
ψ(z, t) =

1

2

∂2

∂z2
ψ(z, t).

Theorem. The function

v(z, t) = −
∂ lnψ(z, t)

∂z
= −2h(t)z − ζ(z; g2(t), g3(t))

gives a solution of the Burgers equation,
where h(t) is the solution of the Chazy equation

h′′′ − 24hh′′+ 36(h′)2 = 0,

and g2, g3, h are given by

g2 = 24(2h2 − h′), g3 = −4(h′′ − 12h′h+ 16h3).
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Corollary.

Fix any h0, g2,0, g3,0. A solution of the Chazy equation with

h(t0) = h0, h′(t0) = −
1

24
g2,0+2h2

0, h′′(t0) = −
1

4
g3,0−

1

2
h0g2,0+8h3

0

provides a solution v(z, t) of the Burgers equation with

the initial wave v(z, t0) = −2h0z − ζ(z; g2,0, g3,0).

For the classical periodic of z solution of the heat equation

we have a stationary solution of the Burgers equation

v(z, t) = −γ ctg(γz), γ = const.
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Corollary. For the solution of the heat equation

ψ∗(z, t) =
1√
t

exp(−
(z − a)2

2t
)

we get the non-stationary solution of the Burgers equation

v(z, t) =
1

t
(z − a).

Corollary. For the solution of the heat equation

ψ(z, t) =
1√
t

exp(−
z2 + a2

2t
)
(

exp(
az

t
)− exp(

−az
t

)
)

we get the non-stationary solution of the Burgers equation

v(z, t) =
1

t
(z − a cth

az

t
).
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Properties of the solutions.

Let v(z, t) be a solution of the Burgers equation discribed before.

It is an odd function of z and

v(z + 2ωk(t), t) = v(z, t) + 2v(ωk(t), t), k = 1,2.

General lemma. Let h(t) be a solution of the Chazy equation.

The function

(Th)(t) =
1

(ct+ d)2
h

(
at+ b

ct+ d

)
−

c

2(ct+ d)
, |c|+ |d| > 0,

satis�es the Chazy equation if and only if (ad−bc−1)(ad−bc) = 0.

Corollary. The solution (Tv)(z, t) of the Burgers equation

corresponding to (Th)(t) is de�ned.
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For h(t) ≡ 0 we get g2 = g3 = 0 and v(z, t) = −1
z is a solution of

the stationary Burgers equation vvz = 1
2vzz.

Example. For h(t) ≡ 0 we have

(Th)(t) = −
c

2(ct+ d)
.

We get g2 = g3 = 0 and the solution of the Burgers equation

(Tv)(z, t) = −
1

z
+

cz

(ct+ d)
.
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For h(t) ≡ k = const we get g2 = 48k2, g3 = −64k3,

and the solution of the stationary Burgers equation

v(z, t) = −
√
−6k ctg(

√
−6kz).

Example. For (Th)(t) = k
(ct+d)2− c

2(ct+d) where h(t) ≡ k = const:

g2(t) = 48
k2

(ct+ d)4
, g3(t) = −64

k3

(ct+ d)6
,

whence ∆ = 0, and for γ(t) =
√

6k
(ct+d) a solution of the Burgers

equation is

(Tv)(z, t) = γ

(
c√
6k
z − cth γz

)
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