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Frobenius manifold
geometric definition

Definition

Frobenius manifold is a complex analytic manifold M equipped with
the following smooth objects:

1 Commutative and Associative Multiplication on TpM,
2 Invariant Indefenite Flat Metric : < u · v ,w >=< u, v · w >,
3 Constant Unity vector field e: ∇e = 0,
4 Linear Euler Vector field E : ∇(∇E ) = 0,

satisfying the following conditions:
Local flow of E re-scales Multiplication and Metric,
4-tensor (∇zc)(u, v ,w) is symmetric in u, v ,w , z ,
where c(u, v ,w) :=< u · v ,w >.
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Let the algebra TpM be semi-simple:

TpM = C{e1} ⊗ C{e2} ⊗ C{e3}
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The constructed 3-web will be called booklet 3-web.
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holonomy of 3-webs

W = {F1,F2,F3} = W(x , y , x + y +
1

5
xy(x − y))
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holonomy of 3-webs

0 ∈ C
2
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holonomy of 3-webs

0 ∈ L1 ∩ L2 ∩ L3
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holonomy of 3-webs

h31(p6) = (h31 ◦ h23 ◦ h12 ◦ h31 ◦ h23 ◦ h12)(p1) = p7 ∈ L1
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holonomy of 3-webs

(h31 ◦ h23 ◦ h12 ◦ h31 ◦ h23 ◦ h12) : (L1, 0) → (L1, 0)

defines holonomy of the 3-web at 0
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Blaschke discovered a local topological invariant of a 3-web.
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Definition
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maps its foliations in 3 families of parallel lines.
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Blaschke discovered a local topological invariant of a 3-web.
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Briançon’s hexagons
are not closed for
nontrivial holonomy.

Definition

3-web is hexagonal if some local diffeomorphism
maps its foliations in 3 families of parallel lines.

-

ϕ
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Theorem (Dubrovin coordinates)

M is massive ⇒ ∃ coordinates λ1, ..., λn :
1) idempotents are partial differentiations: ei := ∂λi .
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booklet 3-web is hexagonal

Theorem (Dubrovin coordinates)

M is massive ⇒ ∃ coordinates λ1, ..., λn :
1) idempotents are partial differentiations: ei := ∂λi .

2)E =
∑

λi∂λi holds true.
To find them, solve E · ξ = λξ.

Corollary

Booklet 3-web is flat.

Let ı : U ∈ C
2 → S ⊂ M be a local parametrization.

The web is defined by ωi := dθi , where
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booklet 3-web is hexagonal

Theorem (Dubrovin coordinates)

M is massive ⇒ ∃ coordinates λ1, ..., λn :
1) idempotents are partial differentiations: ei := ∂λi .

2)E =
∑

λi∂λi holds true.
To find them, solve E · ξ = λξ.

Corollary

Booklet 3-web is flat.

Let ı : U ∈ C
2 → S ⊂ M be a local parametrization.

The web is defined by ωi := dθi , where
θ1 = ı∗(λ2 − λ3), θ2 = ı∗(λ3 − λ1), θ3 = ı∗(λ1 − λ2).
Then θ1 + θ2 + θ3 = 0 and the web is hexagonal:

S. Agafonov Flat 3-webs via Frobenius manifolds



Frobenius manifold flat 3-webs singularities symmetries Chern connection classification

booklet 3-web is hexagonal

Theorem (Dubrovin coordinates)

M is massive ⇒ ∃ coordinates λ1, ..., λn :
1) idempotents are partial differentiations: ei := ∂λi .

2)E =
∑

λi∂λi holds true.
To find them, solve E · ξ = λξ.

Corollary

Booklet 3-web is flat.

Let ı : U ∈ C
2 → S ⊂ M be a local parametrization.

The web is defined by ωi := dθi , where
θ1 = ı∗(λ2 − λ3), θ2 = ı∗(λ3 − λ1), θ3 = ı∗(λ1 − λ2).
Then θ1 + θ2 + θ3 = 0 and the web is hexagonal:
choose θ1, θ2 as local coordinates on S .
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booklet 3-web is hexagonal

Theorem (Dubrovin coordinates)

M is massive ⇒ ∃ coordinates λ1, ..., λn :
1) idempotents are partial differentiations: ei := ∂λi .

2)E =
∑

λi∂λi holds true.
To find them, solve E · ξ = λξ.

Corollary

Booklet 3-web is flat.

Let ı : U ∈ C
2 → S ⊂ M be a local parametrization.

The web is defined by ωi := dθi , where
θ1 = ı∗(λ2 − λ3), θ2 = ı∗(λ3 − λ1), θ3 = ı∗(λ1 − λ2).
Then θ1 + θ2 + θ3 = 0 and the web is hexagonal:
choose θ1, θ2 as local coordinates on S .
The web is cut by the surfaces λi − λj = const.
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characteristic webs

associativity equation

Frobenius structure on 3-manifolds is defined by
weighted homogeneous solution of WDVV equation.
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S. Agafonov Flat 3-webs via Frobenius manifolds



Frobenius manifold flat 3-webs singularities symmetries Chern connection classification

characteristic webs

associativity equation

Frobenius structure on 3-manifolds is defined by
weighted homogeneous solution of WDVV equation.
Canonical forms:

1 fyyy = f 2
xxy − fxxx fxyy ,

2 fxxx fyyy − fxxy fxyy = 1.
Binary equations in (x , y)-plane

1 dx3 − fxxxdx2 · dy − 2fxxydx · dy2 − fxyydy3 = 0,
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characteristic webs

associativity equation

Frobenius structure on 3-manifolds is defined by
weighted homogeneous solution of WDVV equation.
Canonical forms:

1 fyyy = f 2
xxy − fxxx fxyy ,

2 fxxx fyyy − fxxy fxyy = 1.
Binary equations in (x , y)-plane

1 dx3 − fxxxdx2 · dy − 2fxxydx · dy2 − fxyydy3 = 0,
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characteristic webs

associativity equation

Frobenius structure on 3-manifolds is defined by
weighted homogeneous solution of WDVV equation.
Canonical forms:

1 fyyy = f 2
xxy − fxxx fxyy ,

2 fxxx fyyy − fxxy fxyy = 1.
Binary equations in (x , y)-plane

1 dx3 − fxxxdx2 · dy − 2fxxydx · dy2 − fxyydy3 = 0,
2 fxxxdx3 + fxxydx2 · dy − fxyydx · dy2 − fyyydy3 = 0.

define characteristic 3-webs of WDVV equations.
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characteristic webs
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Frobenius structure on 3-manifolds is defined by
weighted homogeneous solution of WDVV equation.
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xxy − fxxx fxyy ,

2 fxxx fyyy − fxxy fxyy = 1.
Binary equations in (x , y)-plane

1 dx3 − fxxxdx2 · dy − 2fxxydx · dy2 − fxyydy3 = 0,
2 fxxxdx3 + fxxydx2 · dy − fxyydx · dy2 − fyyydy3 = 0.

define characteristic 3-webs of WDVV equations.
At least one coefficient does not vanish.
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characteristic webs

associativity equation

Frobenius structure on 3-manifolds is defined by
weighted homogeneous solution of WDVV equation.
Canonical forms:

1 fyyy = f 2
xxy − fxxx fxyy ,

2 fxxx fyyy − fxxy fxyy = 1.
Binary equations in (x , y)-plane

1 dx3 − fxxxdx2 · dy − 2fxxydx · dy2 − fxyydy3 = 0,
2 fxxxdx3 + fxxydx2 · dy − fxyydx · dy2 − fyyydy3 = 0.

define characteristic 3-webs of WDVV equations.
At least one coefficient does not vanish. ⇒
Web directions [dx : dy ] are well-defined, maybe with multiplicity.
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characteristic webs

associativity equation

Frobenius structure on 3-manifolds is defined by
weighted homogeneous solution of WDVV equation.
Canonical forms:

1 fyyy = f 2
xxy − fxxx fxyy ,

2 fxxx fyyy − fxxy fxyy = 1.
Binary equations in (x , y)-plane

1 dx3 − fxxxdx2 · dy − 2fxxydx · dy2 − fxyydy3 = 0,
2 fxxxdx3 + fxxydx2 · dy − fxyydx · dy2 − fyyydy3 = 0.

define characteristic 3-webs of WDVV equations.
At least one coefficient does not vanish. ⇒
Web directions [dx : dy ] are well-defined, maybe with multiplicity.

Theorem

Booklet 3-web is bi-holomorphic to the characteristic 3-web.
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singularities of flat 3-webs

regular and singular points

Point (x , y) is regular ⇔ all directions are distinct.
Flat 3-web does not have local invariants at a regular point!
Point (x , y) is singular ⇔ some directions coincide.

3-web and implicit cubic ODE
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singularities of flat 3-webs

regular and singular points

Point (x , y) is regular ⇔ all directions are distinct.
Flat 3-web does not have local invariants at a regular point!
Point (x , y) is singular ⇔ some directions coincide.

3-web and implicit cubic ODE

In suitable coordinates, the above binary equations reduce to
p3 + A(x , y)p + B(x , y) = 0,
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singularities of flat 3-webs

regular and singular points

Point (x , y) is regular ⇔ all directions are distinct.
Flat 3-web does not have local invariants at a regular point!
Point (x , y) is singular ⇔ some directions coincide.

3-web and implicit cubic ODE

In suitable coordinates, the above binary equations reduce to
p3 + A(x , y)p + B(x , y) = 0, (put p = dy

dx
).
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singularities of flat 3-webs

regular and singular points

Point (x , y) is regular ⇔ all directions are distinct.
Flat 3-web does not have local invariants at a regular point!
Point (x , y) is singular ⇔ some directions coincide.

3-web and implicit cubic ODE

In suitable coordinates, the above binary equations reduce to
p3 + A(x , y)p + B(x , y) = 0, (put p = dy

dx
).

Singular points form the discriminant curve
∆ := {(x , y) : 4A(x , y)3 + 27B(x , y)2 = 0}.
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regular and singular points

Point (x , y) is regular ⇔ all directions are distinct.
Flat 3-web does not have local invariants at a regular point!
Point (x , y) is singular ⇔ some directions coincide.

3-web and implicit cubic ODE

In suitable coordinates, the above binary equations reduce to
p3 + A(x , y)p + B(x , y) = 0, (put p = dy

dx
).

Singular points form the discriminant curve
∆ := {(x , y) : 4A(x , y)3 + 27B(x , y)2 = 0}.

3-web “personality“ is encoded in its behavior at singular points.
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singularities of flat 3-webs

regular and singular points

Point (x , y) is regular ⇔ all directions are distinct.
Flat 3-web does not have local invariants at a regular point!
Point (x , y) is singular ⇔ some directions coincide.

3-web and implicit cubic ODE

In suitable coordinates, the above binary equations reduce to
p3 + A(x , y)p + B(x , y) = 0, (put p = dy

dx
).

Singular points form the discriminant curve
∆ := {(x , y) : 4A(x , y)3 + 27B(x , y)2 = 0}.

3-web “personality“ is encoded in its behavior at singular points.

“Singularity is almost invariably a clue.“
A. Conan Doyle
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examples of good singularities

leaves are tangent to the discriminant curve
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examples of good singularities

leaves have cusps on the discriminant curve.
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examples of good singularities

Clairaut Equation p3 + px − y = 0.
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examples of good singularities

Equation p3 + 2px + y = 0.
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examples of bad singularities

Direction field is not defined at the vertices!
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examples of bad singularities

focus singularities
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examples of bad singularities

saddle singularity
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infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field X = ξ(x , y)∂x + η(x , y)∂y ,

whose local flow preserves the web.
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Definition

Infinitesimal symmetry is a vector field X = ξ(x , y)∂x + η(x , y)∂y ,

whose local flow preserves the web.

examples

dy = 0 has a symmetry algebra {X = ξ(x , y)∂x + η(y)∂y}.
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infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field X = ξ(x , y)∂x + η(x , y)∂y ,

whose local flow preserves the web.

examples

dy = 0 has a symmetry algebra {X = ξ(x , y)∂x + η(y)∂y}.
dx · dy = 0 has a symmetry algebra
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infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field X = ξ(x , y)∂x + η(x , y)∂y ,

whose local flow preserves the web.

examples

dy = 0 has a symmetry algebra {X = ξ(x , y)∂x + η(y)∂y}.
dx · dy = 0 has a symmetry algebra {X = ξ(x)∂x + η(y)∂y}.
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infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field X = ξ(x , y)∂x + η(x , y)∂y ,

whose local flow preserves the web.

examples

dy = 0 has a symmetry algebra {X = ξ(x , y)∂x + η(y)∂y}.
dx · dy = 0 has a symmetry algebra {X = ξ(x)∂x + η(y)∂y}.

Theorem [Cartan]

At a regular point (x , y) a 3-web:
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infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field X = ξ(x , y)∂x + η(x , y)∂y ,

whose local flow preserves the web.

examples

dy = 0 has a symmetry algebra {X = ξ(x , y)∂x + η(y)∂y}.
dx · dy = 0 has a symmetry algebra {X = ξ(x)∂x + η(y)∂y}.

Theorem [Cartan]

At a regular point (x , y) a 3-web:
either does not have symmetries (generic case),
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infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field X = ξ(x , y)∂x + η(x , y)∂y ,

whose local flow preserves the web.

examples

dy = 0 has a symmetry algebra {X = ξ(x , y)∂x + η(y)∂y}.
dx · dy = 0 has a symmetry algebra {X = ξ(x)∂x + η(y)∂y}.

Theorem [Cartan]

At a regular point (x , y) a 3-web:
either does not have symmetries (generic case),
or has an 1-dimensional symmetry algebra and is equivalent to
dx · dy · (dy + u(x + y)dx) = 0 with the symmetry ∂y − ∂x ,
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infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field X = ξ(x , y)∂x + η(x , y)∂y ,

whose local flow preserves the web.

examples

dy = 0 has a symmetry algebra {X = ξ(x , y)∂x + η(y)∂y}.
dx · dy = 0 has a symmetry algebra {X = ξ(x)∂x + η(y)∂y}.

Theorem [Cartan]

At a regular point (x , y) a 3-web:
either does not have symmetries (generic case),
or has an 1-dimensional symmetry algebra and is equivalent to
dx · dy · (dy + u(x + y)dx) = 0 with the symmetry ∂y − ∂x ,
or has a 3-dimensional symmetry algebra and is equivalent to
dx · dy · (dy + dx) = 0 with the algebra {∂x , ∂y , x∂x + y∂y}.
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symmetries at singular points
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counter-example

Not all symmetries survive on the discriminant curve ∆!
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symmetries at singular points

counter-example

Not all symmetries survive on the discriminant curve ∆!
Equation p3 − 2x2y(1 + x2)p + 8x3y2 = 0 has a hexagonal
3-web of solutions but does not admit symmetries at (0, 0).
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symmetries at singular points

counter-example

Not all symmetries survive on the discriminant curve ∆!
Equation p3 − 2x2y(1 + x2)p + 8x3y2 = 0 has a hexagonal
3-web of solutions but does not admit symmetries at (0, 0).

Theorem

Booklet 3-web has an infinitesimal symmetry at each point.
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symmetries at singular points

counter-example

Not all symmetries survive on the discriminant curve ∆!
Equation p3 − 2x2y(1 + x2)p + 8x3y2 = 0 has a hexagonal
3-web of solutions but does not admit symmetries at (0, 0).

Theorem

Booklet 3-web has an infinitesimal symmetry at each point.

The flow exp(a · E ) respects the distributions θi = const.
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symmetries at singular points

counter-example

Not all symmetries survive on the discriminant curve ∆!
Equation p3 − 2x2y(1 + x2)p + 8x3y2 = 0 has a hexagonal
3-web of solutions but does not admit symmetries at (0, 0).

Theorem

Booklet 3-web has an infinitesimal symmetry at each point.

The flow exp(a · E ) respects the distributions θi = const.
Let p ∈ S and Cp be the orbit of p under the flow exp(s · e).
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symmetries at singular points

counter-example

Not all symmetries survive on the discriminant curve ∆!
Equation p3 − 2x2y(1 + x2)p + 8x3y2 = 0 has a hexagonal
3-web of solutions but does not admit symmetries at (0, 0).

Theorem

Booklet 3-web has an infinitesimal symmetry at each point.

The flow exp(a · E ) respects the distributions θi = const.
Let p ∈ S and Cp be the orbit of p under the flow exp(s · e).
Ta(p) := exp(a · E )Cp ∩ S is a symmetry.
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cubic implicit ODEs

3-web can be described by p3 + A(x , y)p + B(x , y) = 0.
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web curvature and Chern connection

cubic implicit ODEs

3-web can be described by p3 + A(x , y)p + B(x , y) = 0.

differential forms

form σi vanishes on the i-th family of web leaves
σ1=dy−p1dx , σ2=dy−p2dx , σ3=dy−p3dx
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web curvature and Chern connection

cubic implicit ODEs

3-web can be described by p3 + A(x , y)p + B(x , y) = 0.

differential forms

form σi vanishes on the i-th family of web leaves
σ1=(p2−p3)(dy−p1dx), σ2=(p3−p1)(dy−p2dx), σ3=(p1−p2)(dy−p3dx)

normalization: σ1 + σ2 + σ3 = 0
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web curvature and Chern connection

cubic implicit ODEs

3-web can be described by p3 + A(x , y)p + B(x , y) = 0.

differential forms

form σi vanishes on the i-th family of web leaves
σ1=(p2−p3)(dy−p1dx), σ2=(p3−p1)(dy−p2dx), σ3=(p1−p2)(dy−p3dx)

normalization: σ1 + σ2 + σ3 = 0 area form: Ω = σ1 ∧ σ2 = ...
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web curvature and Chern connection

cubic implicit ODEs

3-web can be described by p3 + A(x , y)p + B(x , y) = 0.

differential forms

form σi vanishes on the i-th family of web leaves
σ1=(p2−p3)(dy−p1dx), σ2=(p3−p1)(dy−p2dx), σ3=(p1−p2)(dy−p3dx)

normalization: σ1 + σ2 + σ3 = 0 area form: Ω = σ1 ∧ σ2 = ...

Chern connection form

γ := h2σ1 − h1σ2 = ..., where dσi = hiΩ
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web curvature and Chern connection

cubic implicit ODEs

3-web can be described by p3 + A(x , y)p + B(x , y) = 0.

differential forms

form σi vanishes on the i-th family of web leaves
σ1=(p2−p3)(dy−p1dx), σ2=(p3−p1)(dy−p2dx), σ3=(p1−p2)(dy−p3dx)

normalization: σ1 + σ2 + σ3 = 0 area form: Ω = σ1 ∧ σ2 = ...

Chern connection form

γ := h2σ1 − h1σ2 = ..., where dσi = hiΩ
dσi = γ ∧ σi holds,
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web curvature and Chern connection

cubic implicit ODEs

3-web can be described by p3 + A(x , y)p + B(x , y) = 0.

differential forms

form σi vanishes on the i-th family of web leaves
σ1=(p2−p3)(dy−p1dx), σ2=(p3−p1)(dy−p2dx), σ3=(p1−p2)(dy−p3dx)

normalization: σ1 + σ2 + σ3 = 0 area form: Ω = σ1 ∧ σ2 = ...

Chern connection form

γ := h2σ1 − h1σ2 = ..., where dσi = hiΩ
dσi = γ ∧ σi holds, renormalization σi → f σi ⇒ γ → γ + d(ln f )
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web curvature and Chern connection

cubic implicit ODEs

3-web can be described by p3 + A(x , y)p + B(x , y) = 0.

differential forms

form σi vanishes on the i-th family of web leaves
σ1=(p2−p3)(dy−p1dx), σ2=(p3−p1)(dy−p2dx), σ3=(p1−p2)(dy−p3dx)

normalization: σ1 + σ2 + σ3 = 0 area form: Ω = σ1 ∧ σ2 = ...

Chern connection form

γ := h2σ1 − h1σ2 = ..., where dσi = hiΩ
dσi = γ ∧ σi holds, renormalization σi → f σi ⇒ γ → γ + d(ln f )

curvature form

K := d(γ) is invariant.
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web curvature and Chern connection

cubic implicit ODEs

3-web can be described by p3 + A(x , y)p + B(x , y) = 0.

differential forms

form σi vanishes on the i-th family of web leaves
σ1=(p2−p3)(dy−p1dx), σ2=(p3−p1)(dy−p2dx), σ3=(p1−p2)(dy−p3dx)

normalization: σ1 + σ2 + σ3 = 0 area form: Ω = σ1 ∧ σ2 = ...

Chern connection form

γ := h2σ1 − h1σ2 = ..., where dσi = hiΩ
dσi = γ ∧ σi holds, renormalization σi → f σi ⇒ γ → γ + d(ln f )

curvature form

K := d(γ) is invariant. K = 0 ⇔ ∃ f : d(f σi ) = 0

S. Agafonov Flat 3-webs via Frobenius manifolds



Frobenius manifold flat 3-webs singularities symmetries Chern connection classification

web curvature and Chern connection

cubic implicit ODEs

3-web can be described by p3 + A(x , y)p + B(x , y) = 0.

differential forms

form σi vanishes on the i-th family of web leaves
σ1=(p2−p3)(dy−p1dx), σ2=(p3−p1)(dy−p2dx), σ3=(p1−p2)(dy−p3dx)

normalization: σ1 + σ2 + σ3 = 0 area form: Ω = σ1 ∧ σ2 = ...

Chern connection form

γ := h2σ1 − h1σ2 = ..., where dσi = hiΩ
dσi = γ ∧ σi holds, renormalization σi → f σi ⇒ γ → γ + d(ln f )

curvature form

K := d(γ) is invariant. K = 0 ⇔ ∃ f : d(f σi ) = 0 (df
f
= −γ)
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web curvature and Chern connection

cubic implicit ODEs

3-web can be described by p3 + A(x , y)p + B(x , y) = 0.

differential forms

form σi vanishes on the i-th family of web leaves
σ1=(p2−p3)(dy−p1dx), σ2=(p3−p1)(dy−p2dx), σ3=(p1−p2)(dy−p3dx)

normalization: σ1 + σ2 + σ3 = 0 area form: Ω = σ1 ∧ σ2 = ...

Chern connection form

γ := h2σ1 − h1σ2 = ..., where dσi = hiΩ
dσi = γ ∧ σi holds, renormalization σi → f σi ⇒ γ → γ + d(ln f )

curvature form

K := d(γ) is invariant. K = 0 ⇔ ∃ f : d(f σi ) = 0 (df
f
= −γ)

⇒ ∃ ui : d(ui ) = f σi
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web curvature and Chern connection

cubic implicit ODEs

3-web can be described by p3 + A(x , y)p + B(x , y) = 0.

differential forms

form σi vanishes on the i-th family of web leaves
σ1=(p2−p3)(dy−p1dx), σ2=(p3−p1)(dy−p2dx), σ3=(p1−p2)(dy−p3dx)

normalization: σ1 + σ2 + σ3 = 0 area form: Ω = σ1 ∧ σ2 = ...

Chern connection form

γ := h2σ1 − h1σ2 = ..., where dσi = hiΩ
dσi = γ ∧ σi holds, renormalization σi → f σi ⇒ γ → γ + d(ln f )

curvature form

K := d(γ) is invariant. K = 0 ⇔ ∃ f : d(f σi ) = 0 (df
f
= −γ)

⇒ ∃ ui : d(ui ) = f σi ⇒ u1 + u2 + u3 = 0 (hexagonality)
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geometry of Chern connection

connection on TM

Suppose v = η1e1 + η2e2 + η3e3 ∈ TpS and a curve α : I 7→ S
α(0) = p does not passes through singular points of the 3-web.
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geometry of Chern connection

connection on TM

Suppose v = η1e1 + η2e2 + η3e3 ∈ TpS and a curve α : I 7→ S
α(0) = p does not passes through singular points of the 3-web.
Define vector field η(t) ∈ TM along α, such that ηi = const.
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α(0) = p does not passes through singular points of the 3-web.
Define vector field η(t) ∈ TM along α, such that ηi = const.
The projection of η(t) into Tα(t)S along e is the parallel
transport by the booklet 3-web Chern connection.
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geometry of Chern connection

connection on TM

Suppose v = η1e1 + η2e2 + η3e3 ∈ TpS and a curve α : I 7→ S
α(0) = p does not passes through singular points of the 3-web.
Define vector field η(t) ∈ TM along α, such that ηi = const.
The projection of η(t) into Tα(t)S along e is the parallel
transport by the booklet 3-web Chern connection.

singularity on ∆

The connection form of ODE p3+A(x ,y)p+B(x ,y)=0

γ= (2A2Ax−4A2By+6ABAy+9BBx)

4A3+27B2
dx+ (4A2Ay+6ABx+18BBy−9BAx)

4A3+27B2
dy
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geometry of Chern connection

connection on TM

Suppose v = η1e1 + η2e2 + η3e3 ∈ TpS and a curve α : I 7→ S
α(0) = p does not passes through singular points of the 3-web.
Define vector field η(t) ∈ TM along α, such that ηi = const.
The projection of η(t) into Tα(t)S along e is the parallel
transport by the booklet 3-web Chern connection.

singularity on ∆

The connection form of ODE p3+A(x ,y)p+B(x ,y)=0

γ= (2A2Ax−4A2By+6ABAy+9BBx)

4A3+27B2
dx+ (4A2Ay+6ABx+18BBy−9BAx)

4A3+27B2
dy

is not necessarily exact in a neighborhood U of (x0, y0) ∈ ∆.
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geometry of Chern connection

connection on TM

Suppose v = η1e1 + η2e2 + η3e3 ∈ TpS and a curve α : I 7→ S
α(0) = p does not passes through singular points of the 3-web.
Define vector field η(t) ∈ TM along α, such that ηi = const.
The projection of η(t) into Tα(t)S along e is the parallel
transport by the booklet 3-web Chern connection.

singularity on ∆

The connection form of ODE p3+A(x ,y)p+B(x ,y)=0

γ= (2A2Ax−4A2By+6ABAy+9BBx)

4A3+27B2
dx+ (4A2Ay+6ABx+18BBy−9BAx)

4A3+27B2
dy

is not necessarily exact in a neighborhood U of (x0, y0) ∈ ∆.

Theorem

Booklet 3-web has holomorphic Chern connection.
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geometry of Chern connection

connection on TM

Suppose v = η1e1 + η2e2 + η3e3 ∈ TpS and a curve α : I 7→ S
α(0) = p does not passes through singular points of the 3-web.
Define vector field η(t) ∈ TM along α, such that ηi = const.
The projection of η(t) into Tα(t)S along e is the parallel
transport by the booklet 3-web Chern connection.

singularity on ∆

The connection form of ODE p3+A(x ,y)p+B(x ,y)=0

γ= (2A2Ax−4A2By+6ABAy+9BBx)

4A3+27B2
dx+ (4A2Ay+6ABx+18BBy−9BAx)

4A3+27B2
dy

is not necessarily exact in a neighborhood U of (x0, y0) ∈ ∆.

Theorem

Booklet 3-web has holomorphic Chern connection.

For the 1st canonical form of WDVV, γ = 0 holds true
in adjusted flat coordinates of M, restricted on S .
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normal forms for possible singularities

Theorem

Cubic ODE with closed holomorphic Chern connection and an
infinitesimal symmetry is locally equivalent to one of the list:
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normal forms for possible singularities

Theorem

Cubic ODE with closed holomorphic Chern connection and an
infinitesimal symmetry is locally equivalent to one of the list:

1 ym0p3 − p = 0, with X = (2 + m0)x∂x + 2y∂y , Y = ∂x
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normal forms for possible singularities

Theorem

Cubic ODE with closed holomorphic Chern connection and an
infinitesimal symmetry is locally equivalent to one of the list:

1 ym0p3 − p = 0, with X = (2 + m0)x∂x + 2y∂y , Y = ∂x

2 p3 + 2xp + y = 0, with X = 2x∂x + 3y∂y
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normal forms for possible singularities

Theorem

Cubic ODE with closed holomorphic Chern connection and an
infinitesimal symmetry is locally equivalent to one of the list:

1 ym0p3 − p = 0, with X = (2 + m0)x∂x + 2y∂y , Y = ∂x

2 p3 + 2xp + y = 0, with X = 2x∂x + 3y∂y

3 (p − 3
2
x)(p2 + 2

3
xp + y − 2

9
x2) = 0, with X = x∂x + 2y∂y
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normal forms for possible singularities

Theorem

Cubic ODE with closed holomorphic Chern connection and an
infinitesimal symmetry is locally equivalent to one of the list:

1 ym0p3 − p = 0, with X = (2 + m0)x∂x + 2y∂y , Y = ∂x

2 p3 + 2xp + y = 0, with X = 2x∂x + 3y∂y

3 (p − 3
2
x)(p2 + 2

3
xp + y − 2

9
x2) = 0, with X = x∂x + 2y∂y

4 p3 + 4x(y − 4
9
x3)p + y2 + 64

81
x6 − 32

9
yx3 = 0,

with X = x∂x + 3y∂y
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normal forms for possible singularities

Theorem

Cubic ODE with closed holomorphic Chern connection and an
infinitesimal symmetry is locally equivalent to one of the list:

1 ym0p3 − p = 0, with X = (2 + m0)x∂x + 2y∂y , Y = ∂x

2 p3 + 2xp + y = 0, with X = 2x∂x + 3y∂y

3 (p − 3
2
x)(p2 + 2

3
xp + y − 2

9
x2) = 0, with X = x∂x + 2y∂y

4 p3 + 4x(y − 4
9
x3)p + y2 + 64

81
x6 − 32

9
yx3 = 0,

with X = x∂x + 3y∂y

5 p3 + y2p = 2√
27

y3 tan(2
√

3x), with X = y∂y
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normal forms for possible singularities

Theorem

Cubic ODE with closed holomorphic Chern connection and an
infinitesimal symmetry is locally equivalent to one of the list:

1 ym0p3 − p = 0, with X = (2 + m0)x∂x + 2y∂y , Y = ∂x

2 p3 + 2xp + y = 0, with X = 2x∂x + 3y∂y

3 (p − 3
2
x)(p2 + 2

3
xp + y − 2

9
x2) = 0, with X = x∂x + 2y∂y

4 p3 + 4x(y − 4
9
x3)p + y2 + 64

81
x6 − 32

9
yx3 = 0,

with X = x∂x + 3y∂y

5 p3 + y2p = 2√
27

y3 tan(2
√

3x), with X = y∂y

6 p3 + y3+m0p = y
9+3m0

2 F
(

[(m0 + 1)] xy
1+m0

2

)

with X = (1 + m0)x∂x − 2y∂y
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normal forms for possible singularities

Theorem

Cubic ODE with closed holomorphic Chern connection and an
infinitesimal symmetry is locally equivalent to one of the list:

1 ym0p3 − p = 0, with X = (2 + m0)x∂x + 2y∂y , Y = ∂x

2 p3 + 2xp + y = 0, with X = 2x∂x + 3y∂y

3 (p − 3
2
x)(p2 + 2

3
xp + y − 2

9
x2) = 0, with X = x∂x + 2y∂y

4 p3 + 4x(y − 4
9
x3)p + y2 + 64

81
x6 − 32

9
yx3 = 0,

with X = x∂x + 3y∂y

5 p3 + y2p = 2√
27

y3 tan(2
√

3x), with X = y∂y

6 p3 + y3+m0p = y
9+3m0

2 F
(

[(m0 + 1)] xy
1+m0

2

)

with X = (1 + m0)x∂x − 2y∂y

where m0 is non-negative integer and F (t) solves

[12 + 2t2 − 9tF ]dF
dt

= 2(m0+3)
m0+1

(4 + 27F 2) with F (0) = 0.
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normal forms for possible singularities

Theorem

Cubic ODE with closed holomorphic Chern connection and an
infinitesimal symmetry is locally equivalent to one of the list:

1 ym0p3 − p = 0, with X = (2 + m0)x∂x + 2y∂y , Y = ∂x

2 p3 + 2xp + y = 0, with X = 2x∂x + 3y∂y

3 (p − 3
2
x)(p2 + 2

3
xp + y − 2

9
x2) = 0, with X = x∂x + 2y∂y

4 p3 + 4x(y − 4
9
x3)p + y2 + 64

81
x6 − 32

9
yx3 = 0,

with X = x∂x + 3y∂y

5 p3 + y2p = 2√
27

y3 tan(2
√

3x), with X = y∂y

6 p3 + y3+m0p = y
9+3m0

2 F
(

[(m0 + 1)] xy
1+m0

2

)

with X = (1 + m0)x∂x − 2y∂y

where m0 is non-negative integer and F (t) solves

[12 + 2t2 − 9tF ]dF
dt

= 2(m0+3)
m0+1

(4 + 27F 2) with F (0) = 0.
The weights [w1 : w2] determine uniquely the normal form.
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problem

Suppose the web has a symmetry and its Chern connection form
is closed and holomorphic.
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Does this web define Frobenius structure?
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Does this web define Frobenius structure?
If it does, is this structure unique?
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Suppose the web has a symmetry and its Chern connection form
is closed and holomorphic.

Does this web define Frobenius structure?
If it does, is this structure unique?
If not, what are the moduli?
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problem

Suppose the web has a symmetry and its Chern connection form
is closed and holomorphic.

Does this web define Frobenius structure?
If it does, is this structure unique?
If not, what are the moduli?

observation

The construction is easily generalized to higher dimensions.
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problem

Suppose the web has a symmetry and its Chern connection form
is closed and holomorphic.

Does this web define Frobenius structure?
If it does, is this structure unique?
If not, what are the moduli?

observation

The construction is easily generalized to higher dimensions.
For n-dimensional Frobenius manifold, we get
n commuting vector fields vi in C

n−1, satisfying
∑n

i=1 vi = 0;
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problem

Suppose the web has a symmetry and its Chern connection form
is closed and holomorphic.

Does this web define Frobenius structure?
If it does, is this structure unique?
If not, what are the moduli?

observation

The construction is easily generalized to higher dimensions.
For n-dimensional Frobenius manifold, we get
n commuting vector fields vi in C

n−1, satisfying
∑n

i=1 vi = 0;
a flat n-web of curves in C

n−1, admitting a“linear“ symmetry.
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on a general classification of cubic ODEs
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on a general classification of cubic ODEs

Curvature K of the solution 3-web is an obstacle for a general
classification of implicit cubic ODEs.
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on a general classification of cubic ODEs

Curvature K of the solution 3-web is an obstacle for a general
classification of implicit cubic ODEs.

Implicit ODE F (x , y , p) = 0
defines a surface in C

2 × P
1(C):

S := {(x , y , p) : F (x , y , p) = 0}.

S
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on a general classification of cubic ODEs

Curvature K of the solution 3-web is an obstacle for a general
classification of implicit cubic ODEs.

Implicit ODE F (x , y , p) = 0
defines a surface in C

2 × P
1(C):

S := {(x , y , p) : F (x , y , p) = 0}.
Critical points form criminant
C := {(x , y , p) : F = Fp = 0}.

S

?

π
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on a general classification of cubic ODEs

Curvature K of the solution 3-web is an obstacle for a general
classification of implicit cubic ODEs.

Implicit ODE F (x , y , p) = 0
defines a surface in C

2 × P
1(C):

S := {(x , y , p) : F (x , y , p) = 0}.
Critical points form criminant
C := {(x , y , p) : F = Fp = 0}.
Regularity condition:
rank((x , y , p) 7→ (F ,Fp)) = 2.

S

?

π
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on a general classification of cubic ODEs

Curvature K of the solution 3-web is an obstacle for a general
classification of implicit cubic ODEs.

Implicit ODE F (x , y , p) = 0
defines a surface in C

2 × P
1(C):

S := {(x , y , p) : F (x , y , p) = 0}.
Critical points form criminant
C := {(x , y , p) : F = Fp = 0}.
Regularity condition:
rank((x , y , p) 7→ (F ,Fp)) = 2.
⇒ S and C are smooth

S

?

π
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partial classification result
S and C are smooth

Theorem (AS’08)

If an implicit cubic ODE p3 + a(x , y)p2 + b(x , y)p + c(x , y) = 0
has a flat web of solutions and satisfy regularity condition at
m = (x0, y0, p0) ∈ C ⊂ S then there is a local diffeomorphism at
π(m) = (x0, y0), reducing this ODE to:
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partial classification result
S and C are smooth

Theorem (AS’08)

If an implicit cubic ODE p3 + a(x , y)p2 + b(x , y)p + c(x , y) = 0
has a flat web of solutions and satisfy regularity condition at
m = (x0, y0, p0) ∈ C ⊂ S then there is a local diffeomorphism at
π(m) = (x0, y0), reducing this ODE to:

1 p3 + px − y = 0 if p0 is triple
and C is Legendrian,
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partial classification result
S and C are smooth

Theorem (AS’08)

If an implicit cubic ODE p3 + a(x , y)p2 + b(x , y)p + c(x , y) = 0
has a flat web of solutions and satisfy regularity condition at
m = (x0, y0, p0) ∈ C ⊂ S then there is a local diffeomorphism at
π(m) = (x0, y0), reducing this ODE to:

1 p3 + px − y = 0 if p0 is triple
and C is Legendrian,

2 p3 + 2xp + y = 0 if p0 is triple
and C is not Legendrian,
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partial classification result
S and C are smooth

Theorem (AS’08)

If an implicit cubic ODE p3 + a(x , y)p2 + b(x , y)p + c(x , y) = 0
has a flat web of solutions and satisfy regularity condition at
m = (x0, y0, p0) ∈ C ⊂ S then there is a local diffeomorphism at
π(m) = (x0, y0), reducing this ODE to:

1 p3 + px − y = 0 if p0 is triple
and C is Legendrian,

2 p3 + 2xp + y = 0 if p0 is triple
and C is not Legendrian,

3 p2 = x if p0 is double and C is
not Legendrian,

S. Agafonov Flat 3-webs via Frobenius manifolds



Frobenius manifold flat 3-webs singularities symmetries Chern connection classification

partial classification result
S and C are smooth

Theorem (AS’08)

If an implicit cubic ODE p3 + a(x , y)p2 + b(x , y)p + c(x , y) = 0
has a flat web of solutions and satisfy regularity condition at
m = (x0, y0, p0) ∈ C ⊂ S then there is a local diffeomorphism at
π(m) = (x0, y0), reducing this ODE to:

1 p3 + px − y = 0 if p0 is triple
and C is Legendrian,

2 p3 + 2xp + y = 0 if p0 is triple
and C is not Legendrian,

3 p2 = x if p0 is double and C is
not Legendrian,

4 p2 = y if p0 is double and C is
Legendrian.
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web theory founders

Blaschke, Wilhelm 1885-1962 Chern, S.-S. 1911-2004
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