Flat 3-webs via semi-simple Frobenius 3-manifolds

Sergey Agafonov

Universidade Federal da Paraiba, Brazil

Geometrical Methods in Mathematical Physics Moscow, December 2011

The participation of S.A. in the Conference was partially supported by CAPES.

Frobenius manifold	flat 3-webs	singularities	symmetries	Chern connection	classification
Frobenius geometric defin	manifold ^{ition}				

Frobenius manifold	flat 3-webs	singularities	symmetries	Chern connection	classification
Frobenius	manifold				
geometric defini	tion				

Frobenius manifold is a complex analytic manifold M equipped with the following smooth objects:

• Commutative and Associative Multiplication on $T_p M$,

- Commutative and Associative Multiplication on $T_p M$,
- 2 Invariant Indefenite Flat Metric : $\langle u \cdot v, w \rangle = \langle u, v \cdot w \rangle$,

- Commutative and Associative Multiplication on $T_p M$,
- 2 Invariant Indefenite Flat Metric : $\langle u \cdot v, w \rangle = \langle u, v \cdot w \rangle$,
- Solution Constant Unity vector field $e: \nabla e = 0$,

- Commutative and Associative Multiplication on $T_p M$,
- 2 Invariant Indefenite Flat Metric : $\langle u \cdot v, w \rangle = \langle u, v \cdot w \rangle$,
- Solution Constant Unity vector field $e: \nabla e = 0$,
- Linear Euler Vector field $E: \nabla(\nabla E) = 0$,

Frobenius manifold is a complex analytic manifold M equipped with the following smooth objects:

- Commutative and Associative Multiplication on $T_p M$,
- 2 Invariant Indefenite Flat Metric : $\langle u \cdot v, w \rangle = \langle u, v \cdot w \rangle$,
- Solution Constant Unity vector field $e: \nabla e = 0$,
- Linear Euler Vector field $E: \nabla(\nabla E) = 0$,

satisfying the following conditions:

symmetries

Frobenius manifold geometric definition

Definition

Frobenius manifold is a complex analytic manifold M equipped with the following smooth objects:

- Commutative and Associative Multiplication on $T_p M$,
- 2 Invariant Indefenite Flat Metric : $\langle u \cdot v, w \rangle = \langle u, v \cdot w \rangle$,
- Solution Constant Unity vector field $e: \nabla e = 0$,
- Linear Euler Vector field $E: \nabla(\nabla E) = 0$,

satisfying the following conditions:

• Local flow of *E* re-scales Multiplication and Metric,

symmetries

Frobenius manifold geometric definition

Definition

Frobenius manifold is a complex analytic manifold M equipped with the following smooth objects:

- Commutative and Associative Multiplication on $T_p M$,
- 2 Invariant Indefenite Flat Metric : $\langle u \cdot v, w \rangle = \langle u, v \cdot w \rangle$,
- Solution Constant Unity vector field $e: \nabla e = 0$,
- Linear Euler Vector field $E: \nabla(\nabla E) = 0$,

satisfying the following conditions:

- Local flow of *E* re-scales Multiplication and Metric,
- 4-tensor $(\nabla_z c)(u, v, w)$ is symmetric in u, v, w, z, where $c(u, v, w) := \langle u \cdot v, w \rangle$.

 Frobenius manifold
 flat 3-webs
 singularities
 symmetries
 Chern connection
 classification

 3-web
 via
 Frobenius
 3-manifold
 Image: Second s

Let the algebra T_pM be semi-simple:

 $\mathcal{T}_{p}M = \mathbb{C}\{e_{1}\} \otimes \mathbb{C}\{e_{2}\} \otimes \mathbb{C}\{e_{3}\}$

 Frobenius manifold
 flat 3-webs
 singularities
 symmetries
 Chern connection
 classification

 3-web via
 Frobenius
 3-manifold
 Image: Chern connection
 Image: Chern connechern
 Image: Chern connechern</t

Let the algebra T_pM be semi-simple:

 $T_p M = \mathbb{C}\{e_1\} \otimes \mathbb{C}\{e_2\} \otimes \mathbb{C}\{e_3\}$ $e_i \cdot e_j = \delta_{ij} e_i,$

 Frobenius manifold
 flat 3-webs
 singularities
 symmetries
 Chern connection
 classification

 3-web via
 Frobenius
 3-manifold
 Image: Second second

Let the algebra T_pM be semi-simple:

 $T_p M = \mathbb{C}\{e_1\} \otimes \mathbb{C}\{e_2\} \otimes \mathbb{C}\{e_3\}$ $e_i \cdot e_j = \delta_{ij} e_i,$ $e = e_1 + e_2 + e_3.$

flat 3-webs

singularities

symmetries

Chern connection

classification

3-web via Frobenius 3-manifold

Let the algebra $T_{\rho}M$ be semi-simple:

 $T_{p}M = \mathbb{C}\{e_{1}\} \otimes \mathbb{C}\{e_{2}\} \otimes \mathbb{C}\{e_{3}\}$ $e_{i} \cdot e_{j} = \delta_{ij}e_{i},$ $e = e_{1} + e_{2} + e_{3}.$

• Surface *S* transverse to *e*.

flat 3-webs

singularities

symmetries

Chern connection

classification

3-web via Frobenius 3-manifold

Let the algebra $T_{\rho}M$ be semi-simple:

 $T_{p}M = \mathbb{C}\{e_{1}\} \otimes \mathbb{C}\{e_{2}\} \otimes \mathbb{C}\{e_{3}\}$ $e_{i} \cdot e_{j} = \delta_{ij}e_{i},$ $e = e_{1} + e_{2} + e_{3}.$

- Surface *S* transverse to *e*.
- Planes {e, e_i} cut
 3 directions on T_pS.

flat 3-webs

singularities

symmetries

Chern connection

classification

3-web via Frobenius 3-manifold

Let the algebra $T_{\rho}M$ be semi-simple:

 $T_{p}M = \mathbb{C}\{e_{1}\} \otimes \mathbb{C}\{e_{2}\} \otimes \mathbb{C}\{e_{3}\}$ $e_{i} \cdot e_{j} = \delta_{ij}e_{i},$ $e = e_{1} + e_{2} + e_{3}.$

- Surface *S* transverse to *e*.
- Planes {e, e_i} cut
 3 directions on T_pS.
- Integral curves build a 3-web.

flat 3-webs

singularities

symmetries

Chern connection

classification

3-web via Frobenius 3-manifold

Let the algebra $T_p M$ be semi-simple:

 $T_{p}M = \mathbb{C}\{e_{1}\} \otimes \mathbb{C}\{e_{2}\} \otimes \mathbb{C}\{e_{3}\}$ $e_{i} \cdot e_{j} = \delta_{ij}e_{i},$ $e = e_{1} + e_{2} + e_{3}.$

- Surface *S* transverse to *e*.
- Planes $\{e, e_i\}$ cut 3 directions on T_pS .
- Integral curves build a 3-web.

Definition

The constructed 3-web will be called **booklet 3-web**.

flat 3-webs

singularities

symmetries

Chern connection

classification

3-web via Frobenius 3-manifold

Let the algebra $T_p M$ be semisimple:

 $T_p M = \mathbb{C}\{e_1\} \otimes \mathbb{C}\{e_2\} \otimes \mathbb{C}\{e_3\}$ $e_i \cdot e_j = \delta_{ij},$ $e = e_1 + e_2 + e_3.$

- Surface *S* transverse to *e*.
- Planes {e, e_i} cut
 3 directions on T_pS.
- Integral curves build a 3-web.

Definition

The constructed 3-web will be called **booklet 3-web**.

Frobenius manifold	flat 3-webs	singularities	symmetries	Chern connection	classification
holonomy o	f 3-webs				

$$\mathcal{W}=\{\mathcal{F}_1,$$

S. Agafonov Flat 3-webs via Frobenius manifolds

$$h_{23}(p_5) = (h_{23} \circ h_{12} \circ h_{31} \circ h_{23} \circ h_{12})(p_1) = p_6 \in L_3$$

$$h_{23}(p_5) = (h_{23} \circ h_{12} \circ h_{31} \circ h_{23} \circ h_{12})(p_1) = p_6 \in L_3$$

$$h_{31}(p_6) = (h_{31} \circ h_{23} \circ h_{12} \circ h_{31} \circ h_{23} \circ h_{12})(p_1) = p_7 \in L_1$$

defines holonomy of the 3-web at 0

Frobenius manifold	flat 3-webs	singularities	symmetries	Chern connection	classification
hexagonal 3	8-web				

Blaschke discovered a local topological invariant of a 3-web.

Blaschke discovered a local topological invariant of a 3-web.

singularities

symmetries

Chern connection

classification

hexagonal 3-web

Blaschke discovered a local topological invariant of a 3-web.

Briançon's hexagons are not closed for nontrivial holonomy. singularities

symmetries

Chern connection

classification

hexagonal 3-web

Blaschke discovered a local topological invariant of a 3-web.

Briançon's hexagons are not closed for nontrivial holonomy.

Definition

3-web is hexagonal if some local diffeomorphism maps its foliations in 3 families of parallel lines.

singularities

symmetries

hexagonal 3-web

Blaschke discovered a local topological invariant of a 3-web.

Briançon's hexagons are not closed for nontrivial holonomy.

Definition

3-web is hexagonal if some local diffeomorphism maps its foliations in 3 families of parallel lines.

Frobenius manifold	flat 3-webs	singularities	symmetries	Chern connection	classification		
booklet 3-web is hexagonal							

Chern connection

classification

booklet 3-web is hexagonal

Theorem (Dubrovin coordinates)

M is massive $\Rightarrow \exists$ coordinates $\lambda^1, ..., \lambda^n$:

1) idempotents are partial differentiations: $\mathbf{e}_i := \partial_{\lambda^i}$.

Chern connection

classification

booklet 3-web is hexagonal

Theorem (Dubrovin coordinates)

 $\begin{array}{l} M \text{ is massive} \Rightarrow \exists \text{ coordinates } \lambda^1, ..., \lambda^n: \\ 1) \text{ idempotents are partial differentiations: } \mathbf{e}_i := \partial_{\lambda^i}. \\ 2) \mathbf{E} = \sum \lambda^i \partial_{\lambda^i} \text{ holds true.} \end{array}$

Chern connection

classification

booklet 3-web is hexagonal

Theorem (Dubrovin coordinates)

 $\begin{array}{l} M \text{ is massive} \Rightarrow \exists \text{ coordinates } \lambda^1, ..., \lambda^n: \\ 1) \text{ idempotents are partial differentiations: } \mathbf{e}_i := \partial_{\lambda^i}. \\ 2)E = \sum \lambda^i \partial_{\lambda^i} \text{ holds true.} \\ \text{ To find them, solve } E \cdot \xi = \lambda \xi. \end{array}$

Chern connection

classification

booklet 3-web is hexagonal

Theorem (Dubrovin coordinates)

 $\begin{array}{l} M \text{ is massive} \Rightarrow \exists \text{ coordinates } \lambda^1, ..., \lambda^n: \\ 1) \text{ idempotents are partial differentiations: } \mathbf{e}_i := \partial_{\lambda^i}. \\ 2)E = \sum \lambda^i \partial_{\lambda^i} \text{ holds true.} \\ \text{ To find them, solve } E \cdot \xi = \lambda \xi. \end{array}$

Corollary

Booklet 3-web is flat.

Chern connection

classification

booklet 3-web is hexagonal

Theorem (Dubrovin coordinates)

M is massive $\Rightarrow \exists$ coordinates $\lambda^1, ..., \lambda^n$: 1) idempotents are partial differentiations: $\mathbf{e}_i := \partial_{\lambda^i}$. 2) $\mathbf{E} = \sum \lambda^i \partial_{\lambda^i}$ holds true. To find them, solve $\mathbf{E} \cdot \boldsymbol{\xi} = \lambda \boldsymbol{\xi}$.

Corollary

Booklet 3-web is flat.

Let $\imath: U \in \mathbb{C}^2 \to S \subset M$ be a local parametrization.

Chern connection

classification

booklet 3-web is hexagonal

Theorem (Dubrovin coordinates)

 $\begin{array}{l} M \text{ is massive} \Rightarrow \exists \text{ coordinates } \lambda^1, ..., \lambda^n: \\ 1) \text{ idempotents are partial differentiations: } \mathbf{e}_i := \partial_{\lambda^i}. \\ 2)E = \sum \lambda^i \partial_{\lambda^i} \text{ holds true.} \\ \text{ To find them, solve } E \cdot \xi = \lambda \xi. \end{array}$

Corollary

Booklet 3-web is flat.

Let $i: U \in \mathbb{C}^2 \to S \subset M$ be a local parametrization. The web is defined by $\omega_i := d\theta_i$,

Chern connection

classification

booklet 3-web is hexagonal

Theorem (Dubrovin coordinates)

 $\begin{array}{l} M \text{ is massive} \Rightarrow \exists \text{ coordinates } \lambda^1, ..., \lambda^n: \\ 1) \text{ idempotents are partial differentiations: } \mathbf{e}_i := \partial_{\lambda^i}. \\ 2)E = \sum \lambda^i \partial_{\lambda^i} \text{ holds true.} \\ \text{ To find them, solve } E \cdot \xi = \lambda \xi. \end{array}$

Corollary

Booklet 3-web is flat.

Let $i: U \in \mathbb{C}^2 \to S \subset M$ be a local parametrization. The web is defined by $\omega_i := d\theta_i$, where $\theta_1 = i^*(\lambda^2 - \lambda^3), \quad \theta_2 = i^*(\lambda^3 - \lambda^1), \quad \theta_3 = i^*(\lambda^1 - \lambda^2).$

Chern connection

classification

booklet 3-web is hexagonal

Theorem (Dubrovin coordinates)

 $\begin{array}{l} M \text{ is massive} \Rightarrow \exists \text{ coordinates } \lambda^1, ..., \lambda^n: \\ 1) \text{ idempotents are partial differentiations: } \mathbf{e}_i := \partial_{\lambda^i}. \\ 2)E = \sum \lambda^i \partial_{\lambda^i} \text{ holds true.} \\ \text{ To find them, solve } E \cdot \xi = \lambda \xi. \end{array}$

Corollary

Booklet 3-web is flat.

Let $i: U \in \mathbb{C}^2 \to S \subset M$ be a local parametrization. The web is defined by $\omega_i := d\theta_i$, where $\theta_1 = i^*(\lambda^2 - \lambda^3), \quad \theta_2 = i^*(\lambda^3 - \lambda^1), \quad \theta_3 = i^*(\lambda^1 - \lambda^2).$ Then $\theta_1 + \theta_2 + \theta_3 = 0$ and the web is hexagonal:

Chern connection

classification

booklet 3-web is hexagonal

Theorem (Dubrovin coordinates)

 $\begin{array}{l} M \text{ is massive} \Rightarrow \exists \text{ coordinates } \lambda^1, ..., \lambda^n: \\ 1) \text{ idempotents are partial differentiations: } \mathbf{e}_i := \partial_{\lambda^i}. \\ 2)E = \sum \lambda^i \partial_{\lambda^i} \text{ holds true.} \\ \text{ To find them, solve } E \cdot \xi = \lambda \xi. \end{array}$

Corollary

Booklet 3-web is flat.

Let $i: U \in \mathbb{C}^2 \to S \subset M$ be a local parametrization. The web is defined by $\omega_i := d\theta_i$, where $\theta_1 = i^*(\lambda^2 - \lambda^3), \quad \theta_2 = i^*(\lambda^3 - \lambda^1), \quad \theta_3 = i^*(\lambda^1 - \lambda^2).$ Then $\theta_1 + \theta_2 + \theta_3 = 0$ and the web is hexagonal: choose θ_1, θ_2 as local coordinates on S.

Chern connection

classification

booklet 3-web is hexagonal

Theorem (Dubrovin coordinates)

 $\begin{array}{l} M \text{ is massive} \Rightarrow \exists \text{ coordinates } \lambda^1, ..., \lambda^n: \\ 1) \text{ idempotents are partial differentiations: } \mathbf{e}_i := \partial_{\lambda^i}. \\ 2)E = \sum \lambda^i \partial_{\lambda^i} \text{ holds true.} \\ \text{ To find them, solve } E \cdot \xi = \lambda \xi. \end{array}$

Corollary

Booklet 3-web is flat.

Let $i: U \in \mathbb{C}^2 \to S \subset M$ be a local parametrization. The web is defined by $\omega_i := d\theta_i$, where $\theta_1 = i^*(\lambda^2 - \lambda^3), \quad \theta_2 = i^*(\lambda^3 - \lambda^1), \quad \theta_3 = i^*(\lambda^1 - \lambda^2).$ Then $\theta_1 + \theta_2 + \theta_3 = 0$ and the web is hexagonal: choose θ_1, θ_2 as local coordinates on S. The web is cut by the surfaces $\lambda^i - \lambda^j = const$.

Frobenius manifold	flat 3-webs	singularities	symmetries	Chern connection	classification
characterist	ic webs				

Chern connection

classification

characteristic webs

associativity equation

Frobenius structure on 3-manifolds is defined by weighted homogeneous solution of WDVV equation.

Chern connection

classification

characteristic webs

associativity equation

Frobenius structure on 3-manifolds is defined by weighted homogeneous solution of WDVV equation. Canonical forms:

associativity equation

Frobenius structure on 3-manifolds is defined by weighted homogeneous solution of WDVV equation. Canonical forms:

 $I f_{yyy} = f_{xxy}^2 - f_{xxx} f_{xyy},$

associativity equation

Frobenius structure on 3-manifolds is defined by weighted homogeneous solution of WDVV equation. Canonical forms:

1 $f_{yyy} = f_{xxy}^2 - f_{xxx}f_{xyy},$ 2 $f_{xxx}f_{yyy} - f_{xxy}f_{xyy} = 1.$

associativity equation

Frobenius structure on 3-manifolds is defined by weighted homogeneous solution of WDVV equation. Canonical forms:

• $f_{yyy} = f_{xxy}^2 - f_{xxx}f_{xyy},$ • $f_{xxx}f_{yyy} - f_{xxy}f_{xyy} = 1.$ Binary equations in (x, y)-plane

characteristic webs

associativity equation

Frobenius structure on 3-manifolds is defined by weighted homogeneous solution of WDVV equation. Canonical forms:

2 $f_{xxx}f_{yyy} - f_{xxy}f_{xyy} = 1.$ Binary equations in (x, y)-plane $dx^3 - f_{xxx} dx^2 \cdot dy - 2f_{xxy} dx \cdot dy^2 - f_{xyy} dy^3 = 0,$

characteristic webs

associativity equation

Frobenius structure on 3-manifolds is defined by weighted homogeneous solution of WDVV equation. Canonical forms:

f_{yyy} = f²_{xxy} - f_{xxx} f_{xyy},
f_{xxx} f_{yyy} - f_{xxy} f_{xyy} = 1.
Binary equations in (x, y)-plane
dx³ - f_{xxx} dx² · dy - 2f_{xxy} dx · dy² - f_{xyy} dy³ = 0,
f_{xxx} dx³ + f_{xxy} dx² · dy - f_{xyy} dx · dy² - f_{yyy} dy³ = 0.
Chern connection

classification

characteristic webs

associativity equation

Frobenius structure on 3-manifolds is defined by weighted homogeneous solution of WDVV equation. Canonical forms:

• $f_{yyy} = f_{xxy}^2 - f_{xxx}f_{xyy}$, • $f_{xxx}f_{yyy} - f_{xxy}f_{xyy} = 1$. Binary equations in (x, y)-plane • $dx^3 - f_{xxx}dx^2 \cdot dy - 2f_{xxy}dx \cdot dy^2 - f_{xyy}dy^3 = 0$, • $f_{xxx}dx^3 + f_{xxy}dx^2 \cdot dy - f_{xyy}dx \cdot dy^2 - f_{yyy}dy^3 = 0$. define characteristic 3-webs of WDVV equations.

characteristic webs

associativity equation

Frobenius structure on 3-manifolds is defined by weighted homogeneous solution of WDVV equation. Canonical forms:

f_{yyy} = f²_{xxy} - f_{xxx} f_{xyy},
f_{xxx} f_{yyy} - f_{xxy} f_{xyy} = 1.
Binary equations in (x, y)-plane
dx³ - f_{xxx} dx² · dy - 2f_{xxy} dx · dy² - f_{xyy} dy³ = 0,
f_{xxx} dx³ + f_{xxy} dx² · dy - f_{xyy} dx · dy² - f_{yyy} dy³ = 0.
define characteristic 3-webs of WDVV equations.
At least one coefficient does not vanish.

Chern connection

classification

characteristic webs

associativity equation

Frobenius structure on 3-manifolds is defined by weighted homogeneous solution of WDVV equation. Canonical forms:

f_{yyy} = f²_{xxy} - f_{xxx} f_{xyy},
f_{xxx} f_{yyy} - f_{xxy} f_{xyy} = 1.
Binary equations in (x, y)-plane
dx³ - f_{xxx} dx² · dy - 2f_{xxy} dx · dy² - f_{xyy} dy³ = 0,
f_{xxx} dx³ + f_{xxy} dx² · dy - f_{xyy} dx · dy² - f_{yyy} dy³ = 0.
define characteristic 3-webs of WDVV equations.
At least one coefficient does not vanish. ⇒
Web directions [dx : dy] are well-defined, maybe with multiplicity.

Chern connection

classification

characteristic webs

associativity equation

Frobenius structure on 3-manifolds is defined by weighted homogeneous solution of WDVV equation. Canonical forms:

f_{yyy} = f²_{xxy} - f_{xxx} f_{xyy},
f_{xxx} f_{yyy} - f_{xxy} f_{xyy} = 1.
Binary equations in (x, y)-plane
dx³ - f_{xxx} dx² · dy - 2f_{xxy} dx · dy² - f_{xyy} dy³ = 0,
f_{xxx} dx³ + f_{xxy} dx² · dy - f_{xyy} dx · dy² - f_{yyy} dy³ = 0.
define characteristic 3-webs of WDVV equations.
At least one coefficient does not vanish. ⇒
Web directions [dx : dy] are well-defined, maybe with multiplicity.

Theorem

Booklet 3-web is bi-holomorphic to the characteristic 3-web.

flat 3-webs

singularities

symmetries

Chern connection

classification

singularities of flat 3-webs

symmetries

Chern connection

classification

singularities of flat 3-webs

regular and singular points

Chern connection

classification

singularities of flat 3-webs

regular and singular points

• Point (x, y) is regular \Leftrightarrow all directions are distinct.

Chern connection

classification

singularities of flat 3-webs

regular and singular points

- Point (x, y) is regular \Leftrightarrow all directions are distinct.
- Flat 3-web does not have local invariants at a regular point!

Chern connection

classification

singularities of flat 3-webs

regular and singular points

- Point (x, y) is regular \Leftrightarrow all directions are distinct.
- Flat 3-web does not have local invariants at a regular point!
- Point (x, y) is singular \Leftrightarrow some directions coincide.

Chern connection

classification

singularities of flat 3-webs

regular and singular points

- Point (x, y) is regular \Leftrightarrow all directions are distinct.
- Flat 3-web does not have local invariants at a regular point!
- Point (x, y) is singular \Leftrightarrow some directions coincide.

3-web and implicit cubic ODE

Chern connection

classification

singularities of flat 3-webs

regular and singular points

- Point (x, y) is regular \Leftrightarrow all directions are distinct.
- Flat 3-web does not have local invariants at a regular point!
- Point (x, y) is singular \Leftrightarrow some directions coincide.

3-web and implicit cubic ODE

• In suitable coordinates, the above binary equations reduce to $p^3 + A(x, y)p + B(x, y) = 0$,

singularities of flat 3-webs

regular and singular points

- Point (x, y) is regular \Leftrightarrow all directions are distinct.
- Flat 3-web does not have local invariants at a regular point!
- Point (x, y) is singular \Leftrightarrow some directions coincide.

3-web and implicit cubic ODE

• In suitable coordinates, the above binary equations reduce to $p^3 + A(x, y)p + B(x, y) = 0$, (put $p = \frac{dy}{dx}$).

Chern connection

classification

singularities of flat 3-webs

regular and singular points

- Point (x, y) is regular \Leftrightarrow all directions are distinct.
- Flat 3-web does not have local invariants at a regular point!
- Point (x, y) is singular \Leftrightarrow some directions coincide.

3-web and implicit cubic ODE

- In suitable coordinates, the above binary equations reduce to $p^3 + A(x, y)p + B(x, y) = 0$, (put $p = \frac{dy}{dx}$).
- Singular points form the discriminant curve $\Delta := \{(x, y) : 4A(x, y)^3 + 27B(x, y)^2 = 0\}.$

Chern connection

classification

singularities of flat 3-webs

regular and singular points

- Point (x, y) is regular \Leftrightarrow all directions are distinct.
- Flat 3-web does not have local invariants at a regular point!
- Point (x, y) is singular \Leftrightarrow some directions coincide.

3-web and implicit cubic ODE

- In suitable coordinates, the above binary equations reduce to $p^3 + A(x, y)p + B(x, y) = 0$, (put $p = \frac{dy}{dx}$).
- Singular points form the discriminant curve $\Delta := \{(x, y) : 4A(x, y)^3 + 27B(x, y)^2 = 0\}.$

3-web "personality" is encoded in its behavior at singular points.

singularities of flat 3-webs

regular and singular points

- Point (x, y) is regular \Leftrightarrow all directions are distinct.
- Flat 3-web does not have local invariants at a regular point!
- Point (x, y) is singular \Leftrightarrow some directions coincide.

3-web and implicit cubic ODE

- In suitable coordinates, the above binary equations reduce to $p^3 + A(x, y)p + B(x, y) = 0$, (put $p = \frac{dy}{dx}$).
- Singular points form the discriminant curve $\Delta := \{(x, y) : 4A(x, y)^3 + 27B(x, y)^2 = 0\}.$

3-web "personality" is encoded in its behavior at singular points. "Singularity is almost invariably a clue." A. Conan Doyle

flat 3-webs

singularities

symmetries

Chern connection

classification

flat 3-webs

singularities

symmetries

Chern connection

classification

flat 3-webs

singularities

symmetries

Chern connection

classification

examples of good singularities

leaves are tangent to the discriminant curve

flat 3-webs

singularities

symmetries

Chern connection

classification

symmetries

Chern connection

classification

examples of good singularities

leaves have cusps on the discriminant curve.

symmetries

Chern connection

classification

symmetries

Chern connection

classification

examples of good singularities

Clairaut Equation $p^3 + px - y = 0$.

symmetries

Chern connection

classification

symmetries

Chern connection

classification

examples of good singularities

Equation $p^3 + 2px + y = 0$.

flat 3-webs

singularities

symmetries

Chern connection

classification

flat 3-webs

singularities

symmetries

Chern connection

classification

flat 3-webs

singularities

symmetries

Chern connection

classification

flat 3-webs

singularities

symmetries

Chern connection

classification

examples of bad singularities

Direction field is not defined at the vertices!

flat 3-webs

singularities

symmetries

Chern connection

classification

flat 3-webs

singularities

symmetries

Chern connection

classification

Chern connection

classification

examples of bad singularities

focus singularities

Chern connection

classification

examples of bad singularities

saddle singularity

 Frobenius manifold
 flat 3-webs
 singularities
 symmetries
 Chern connection
 classification

 infinitesimal symmetries

infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field $X = \xi(x, y)\partial_x + \eta(x, y)\partial_y$, whose local flow preserves the web.

infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field $X = \xi(x, y)\partial_x + \eta(x, y)\partial_y$, whose local flow preserves the web.

examples

classification

infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field $X = \xi(x, y)\partial_x + \eta(x, y)\partial_y$, whose local flow preserves the web.

examples

• dy = 0 has a symmetry algebra

infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field $X = \xi(x, y)\partial_x + \eta(x, y)\partial_y$, whose local flow preserves the web.

examples

• dy = 0 has a symmetry algebra $\{X = \xi(x, y)\partial_x + \eta(y)\partial_y\}$.

infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field $X = \xi(x, y)\partial_x + \eta(x, y)\partial_y$, whose local flow preserves the web.

examples

dy = 0 has a symmetry algebra {X = ξ(x, y)∂_x + η(y)∂_y}.
dx · dy = 0 has a symmetry algebra

infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field $X = \xi(x, y)\partial_x + \eta(x, y)\partial_y$, whose local flow preserves the web.

examples

dy = 0 has a symmetry algebra {X = ξ(x, y)∂_x + η(y)∂_y}.
dx ⋅ dy = 0 has a symmetry algebra {X = ξ(x)∂_x + η(y)∂_y}.

infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field $X = \xi(x, y)\partial_x + \eta(x, y)\partial_y$, whose local flow preserves the web.

examples

dy = 0 has a symmetry algebra {X = ξ(x, y)∂_x + η(y)∂_y}.
dx ⋅ dy = 0 has a symmetry algebra {X = ξ(x)∂_x + η(y)∂_y}.

Theorem [Cartan]

At a regular point (x, y) a 3-web:

infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field $X = \xi(x, y)\partial_x + \eta(x, y)\partial_y$, whose local flow preserves the web.

examples

dy = 0 has a symmetry algebra {X = ξ(x, y)∂_x + η(y)∂_y}.
dx ⋅ dy = 0 has a symmetry algebra {X = ξ(x)∂_x + η(y)∂_y}.

Theorem [Cartan]

At a regular point (x, y) a 3-web:

• either does not have symmetries (generic case),

infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field $X = \xi(x, y)\partial_x + \eta(x, y)\partial_y$, whose local flow preserves the web.

examples

- dy = 0 has a symmetry algebra $\{X = \xi(x, y)\partial_x + \eta(y)\partial_y\}$.
- $dx \cdot dy = 0$ has a symmetry algebra $\{X = \xi(x)\partial_x + \eta(y)\partial_y\}$.

Theorem [Cartan]

At a regular point (x, y) a 3-web:

- either does not have symmetries (generic case),
- or has an 1-dimensional symmetry algebra and is equivalent to $dx \cdot dy \cdot (dy + u(x + y)dx) = 0$ with the symmetry $\partial_y \partial_x$,

infinitesimal symmetries

Definition

Infinitesimal symmetry is a vector field $X = \xi(x, y)\partial_x + \eta(x, y)\partial_y$, whose local flow preserves the web.

examples

- dy = 0 has a symmetry algebra $\{X = \xi(x, y)\partial_x + \eta(y)\partial_y\}$.
- $dx \cdot dy = 0$ has a symmetry algebra $\{X = \xi(x)\partial_x + \eta(y)\partial_y\}$.

Theorem [Cartan]

At a regular point (x, y) a 3-web:

- either does not have symmetries (generic case),
- or has an 1-dimensional symmetry algebra and is equivalent to $dx \cdot dy \cdot (dy + u(x + y)dx) = 0$ with the symmetry $\partial_y \partial_x$,
- or has a 3-dimensional symmetry algebra and is equivalent to $dx \cdot dy \cdot (dy + dx) = 0$ with the algebra $\{\partial_x, \partial_y, x\partial_x + y\partial_y\}$.

flat 3-webs

singularities

symmetries

Chern connection

classification

symmetries at singular points

 Frobenius manifold
 flat 3-webs
 singularities
 symmetries
 Chern connection
 classification

 symmetries at singular points

 counter-example

 • Not all symmetries survive on the discriminant curve Δ!

- Not all symmetries survive on the discriminant curve Δ !
- Equation $p^3 2x^2y(1+x^2)p + 8x^3y^2 = 0$ has a hexagonal 3-web of solutions but does not admit symmetries at (0,0).

- Not all symmetries survive on the discriminant curve Δ !
- Equation $p^3 2x^2y(1 + x^2)p + 8x^3y^2 = 0$ has a hexagonal 3-web of solutions but does not admit symmetries at (0, 0).

Theorem

Booklet 3-web has an infinitesimal symmetry at each point.

- Not all symmetries survive on the discriminant curve Δ !
- Equation $p^3 2x^2y(1 + x^2)p + 8x^3y^2 = 0$ has a hexagonal 3-web of solutions but does not admit symmetries at (0, 0).

Theorem

Booklet 3-web has an infinitesimal symmetry at each point.

The flow $\exp(a \cdot E)$ respects the distributions $\theta_i = const$.

- Not all symmetries survive on the discriminant curve Δ !
- Equation $p^3 2x^2y(1+x^2)p + 8x^3y^2 = 0$ has a hexagonal 3-web of solutions but does not admit symmetries at (0, 0).

Theorem

Booklet 3-web has an infinitesimal symmetry at each point.

The flow $\exp(a \cdot E)$ respects the distributions $\theta_i = const$. Let $p \in S$ and C_p be the orbit of p under the flow $\exp(s \cdot e)$.

- Not all symmetries survive on the discriminant curve Δ !
- Equation $p^3 2x^2y(1+x^2)p + 8x^3y^2 = 0$ has a hexagonal 3-web of solutions but does not admit symmetries at (0, 0).

Theorem

Booklet 3-web has an infinitesimal symmetry at each point.

The flow $\exp(a \cdot E)$ respects the distributions $\theta_i = const$. Let $p \in S$ and C_p be the orbit of p under the flow $\exp(s \cdot e)$. $T_a(p) := \exp(a \cdot E)C_p \cap S$ is a symmetry.

flat 3-webs

singularities

symmetrie

Chern connection

classification

web curvature and Chern connection

web curvature and Chern connection

cubic implicit ODEs

3-web can be described by $p^3 + A(x, y)p + B(x, y) = 0$.

web curvature and Chern connection

cubic implicit ODEs

3-web can be described by $p^3 + A(x, y)p + B(x, y) = 0$.

differential forms

form σ_i vanishes on the i-th family of web leaves

 $\sigma_1 = dy - p_1 dx, \quad \sigma_2 = dy - p_2 dx, \quad \sigma_3 = dy - p_3 dx$

web curvature and Chern connection

cubic implicit ODEs

3-web can be described by $p^3 + A(x, y)p + B(x, y) = 0$.

differential forms

form σ_i vanishes on the i-th family of web leaves

 $\sigma_1 = (p_2 - p_3)(dy - p_1 dx), \quad \sigma_2 = (p_3 - p_1)(dy - p_2 dx), \quad \sigma_3 = (p_1 - p_2)(dy - p_3 dx)$ normalization: $\sigma_1 + \sigma_2 + \sigma_3 = 0$

web curvature and Chern connection

cubic implicit ODEs

3-web can be described by $p^3 + A(x, y)p + B(x, y) = 0$.

differential forms

form σ_i vanishes on the i-th family of web leaves

 $\begin{aligned} \sigma_1 = (p_2 - p_3)(dy - p_1 dx), & \sigma_2 = (p_3 - p_1)(dy - p_2 dx), & \sigma_3 = (p_1 - p_2)(dy - p_3 dx) \\ \text{normalization:} & \sigma_1 + \sigma_2 + \sigma_3 = 0 & \text{area form:} & \Omega = \sigma_1 \wedge \sigma_2 = \dots \end{aligned}$

web curvature and Chern connection

cubic implicit ODEs

3-web can be described by $p^3 + A(x, y)p + B(x, y) = 0$.

differential forms

form σ_i vanishes on the *i*-th family of web leaves

 $\begin{aligned} \sigma_1 = (p_2 - p_3)(dy - p_1 dx), & \sigma_2 = (p_3 - p_1)(dy - p_2 dx), & \sigma_3 = (p_1 - p_2)(dy - p_3 dx) \\ \text{normalization:} & \sigma_1 + \sigma_2 + \sigma_3 = 0 & \text{area form:} & \Omega = \sigma_1 \wedge \sigma_2 = \dots \end{aligned}$

Chern connection form

 $\gamma := h_2 \sigma_1 - h_1 \sigma_2 = \dots$, where $d\sigma_i = h_i \Omega$

web curvature and Chern connection

cubic implicit ODEs

3-web can be described by $p^3 + A(x, y)p + B(x, y) = 0$.

differential forms

form σ_i vanishes on the *i*-th family of web leaves

 $\begin{aligned} \sigma_1 = (p_2 - p_3)(dy - p_1 dx), & \sigma_2 = (p_3 - p_1)(dy - p_2 dx), & \sigma_3 = (p_1 - p_2)(dy - p_3 dx) \\ \text{normalization:} & \sigma_1 + \sigma_2 + \sigma_3 = 0 & \text{area form:} & \Omega = \sigma_1 \wedge \sigma_2 = \dots \end{aligned}$

Chern connection form

 $\gamma := h_2 \sigma_1 - h_1 \sigma_2 = ..., \text{ where } d\sigma_i = h_i \Omega$ $d\sigma_i = \gamma \wedge \sigma_i \text{ holds,}$

web curvature and Chern connection

cubic implicit ODEs

3-web can be described by $p^3 + A(x, y)p + B(x, y) = 0$.

differential forms

form σ_i vanishes on the *i*-th family of web leaves

 $\begin{aligned} \sigma_1 = (p_2 - p_3)(dy - p_1 dx), & \sigma_2 = (p_3 - p_1)(dy - p_2 dx), & \sigma_3 = (p_1 - p_2)(dy - p_3 dx) \\ \text{normalization:} & \sigma_1 + \sigma_2 + \sigma_3 = 0 & \text{area form:} & \Omega = \sigma_1 \wedge \sigma_2 = \dots \end{aligned}$

Chern connection form

 $\begin{array}{l} \gamma := h_2 \sigma_1 - h_1 \sigma_2 = ..., \text{ where } d\sigma_i = h_i \Omega \\ d\sigma_i = \gamma \wedge \sigma_i \text{ holds, renormalization } \sigma_i \to f \sigma_i \Rightarrow \gamma \to \gamma + d(\ln f) \end{array}$
web curvature and Chern connection

cubic implicit ODEs

3-web can be described by $p^3 + A(x, y)p + B(x, y) = 0$.

differential forms

form σ_i vanishes on the *i*-th family of web leaves

 $\begin{aligned} \sigma_1 = (p_2 - p_3)(dy - p_1 dx), & \sigma_2 = (p_3 - p_1)(dy - p_2 dx), & \sigma_3 = (p_1 - p_2)(dy - p_3 dx) \\ \text{normalization:} & \sigma_1 + \sigma_2 + \sigma_3 = 0 & \text{area form:} & \Omega = \sigma_1 \wedge \sigma_2 = \dots \end{aligned}$

Chern connection form

 $\gamma := h_2 \sigma_1 - h_1 \sigma_2 = \dots, \text{ where } d\sigma_i = h_i \Omega$ $d\sigma_i = \gamma \wedge \sigma_i \text{ holds, renormalization } \sigma_i \to f\sigma_i \Rightarrow \gamma \to \gamma + d(\ln f)$

curvature form

 $K := d(\gamma)$ is invariant.

web curvature and Chern connection

cubic implicit ODEs

3-web can be described by $p^3 + A(x, y)p + B(x, y) = 0$.

differential forms

form σ_i vanishes on the i-th family of web leaves

 $\begin{aligned} \sigma_1 = (p_2 - p_3)(dy - p_1 dx), & \sigma_2 = (p_3 - p_1)(dy - p_2 dx), & \sigma_3 = (p_1 - p_2)(dy - p_3 dx) \\ \text{normalization:} & \sigma_1 + \sigma_2 + \sigma_3 = 0 & \text{area form:} & \Omega = \sigma_1 \wedge \sigma_2 = \dots \end{aligned}$

Chern connection form

 $\gamma := h_2 \sigma_1 - h_1 \sigma_2 = ..., \text{ where } d\sigma_i = h_i \Omega$ $d\sigma_i = \gamma \wedge \sigma_i \text{ holds, renormalization } \sigma_i \to f \sigma_i \Rightarrow \gamma \to \gamma + d(\ln f)$

curvature form

$$K := d(\gamma)$$
 is invariant. $K = 0 \Leftrightarrow \exists f : d(f\sigma_i) = 0$

web curvature and Chern connection

cubic implicit ODEs

3-web can be described by $p^3 + A(x, y)p + B(x, y) = 0$.

differential forms

form σ_i vanishes on the i-th family of web leaves

 $\begin{aligned} \sigma_1 = (p_2 - p_3)(dy - p_1 dx), & \sigma_2 = (p_3 - p_1)(dy - p_2 dx), & \sigma_3 = (p_1 - p_2)(dy - p_3 dx) \\ \text{normalization:} & \sigma_1 + \sigma_2 + \sigma_3 = 0 & \text{area form:} & \Omega = \sigma_1 \wedge \sigma_2 = \dots \end{aligned}$

Chern connection form

 $\gamma := h_2 \sigma_1 - h_1 \sigma_2 = \dots, \text{ where } d\sigma_i = h_i \Omega$ $d\sigma_i = \gamma \wedge \sigma_i \text{ holds, renormalization } \sigma_i \to f\sigma_i \Rightarrow \gamma \to \gamma + d(\ln f)$

curvature form

$$K := d(\gamma)$$
 is invariant. $K = 0 \Leftrightarrow \exists f : d(f\sigma_i) = 0 \ (\frac{df}{f} = -\gamma)$

web curvature and Chern connection

cubic implicit ODEs

3-web can be described by $p^3 + A(x, y)p + B(x, y) = 0$.

differential forms

form σ_i vanishes on the i-th family of web leaves

 $\begin{aligned} \sigma_1 = (p_2 - p_3)(dy - p_1 dx), & \sigma_2 = (p_3 - p_1)(dy - p_2 dx), & \sigma_3 = (p_1 - p_2)(dy - p_3 dx) \\ \text{normalization:} & \sigma_1 + \sigma_2 + \sigma_3 = 0 & \text{area form:} & \Omega = \sigma_1 \wedge \sigma_2 = \dots \end{aligned}$

Chern connection form

 $\gamma := h_2 \sigma_1 - h_1 \sigma_2 = \dots, \text{ where } d\sigma_i = h_i \Omega$ $d\sigma_i = \gamma \wedge \sigma_i \text{ holds, renormalization } \sigma_i \to f\sigma_i \Rightarrow \gamma \to \gamma + d(\ln f)$

curvature form

 $\begin{array}{l} \mathcal{K} := d(\gamma) \text{ is invariant.} \quad \mathcal{K} = 0 \Leftrightarrow \exists f : d(f\sigma_i) = 0 \ \left(\frac{df}{f} = -\gamma\right) \\ \Rightarrow \exists u_i : d(u_i) = f\sigma_i \end{array}$

web curvature and Chern connection

cubic implicit ODEs

3-web can be described by $p^3 + A(x, y)p + B(x, y) = 0$.

differential forms

form σ_i vanishes on the i-th family of web leaves

 $\begin{aligned} \sigma_1 = (p_2 - p_3)(dy - p_1 dx), & \sigma_2 = (p_3 - p_1)(dy - p_2 dx), & \sigma_3 = (p_1 - p_2)(dy - p_3 dx) \\ \text{normalization:} & \sigma_1 + \sigma_2 + \sigma_3 = 0 & \text{area form:} & \Omega = \sigma_1 \wedge \sigma_2 = \dots \end{aligned}$

Chern connection form

 $\gamma := h_2 \sigma_1 - h_1 \sigma_2 = \dots, \text{ where } d\sigma_i = h_i \Omega$ $d\sigma_i = \gamma \wedge \sigma_i \text{ holds, renormalization } \sigma_i \to f\sigma_i \Rightarrow \gamma \to \gamma + d(\ln f)$

curvature form

 $\begin{array}{l} K := d(\gamma) \text{ is invariant.} \quad K = 0 \Leftrightarrow \exists f : d(f\sigma_i) = 0 \ (\frac{df}{f} = -\gamma) \\ \Rightarrow \exists u_i : d(u_i) = f\sigma_i \Rightarrow u_1 + u_2 + u_3 = 0 \ (\text{hexagonality}) \end{array}$

Frobenius manifold

flat 3-webs

singularities

symmetries

Chern connection

classification

geometry of Chern connection

Chern connection

classification

geometry of Chern connection

connection on TM

Chern connection

classification

geometry of Chern connection

connection on TM

• Suppose $v = \eta^1 e_1 + \eta^2 e_2 + \eta^3 e_3 \in T_p S$ and a curve $\alpha : I \mapsto S$ $\alpha(0) = p$ does not passes through singular points of the 3-web.

Chern connection

classification

geometry of Chern connection

connection on TM

- Suppose $v = \eta^1 e_1 + \eta^2 e_2 + \eta^3 e_3 \in T_p S$ and a curve $\alpha : I \mapsto S$ $\alpha(0) = p$ does not passes through singular points of the 3-web.
- Define vector field $\eta(t) \in TM$ along α , such that $\eta^i = const$.

connection on TM

- Suppose $v = \eta^1 e_1 + \eta^2 e_2 + \eta^3 e_3 \in T_p S$ and a curve $\alpha : I \mapsto S$ $\alpha(0) = p$ does not passes through singular points of the 3-web.
- Define vector field $\eta(t) \in TM$ along α , such that $\eta^i = const$.
- The projection of $\eta(t)$ into $T_{\alpha(t)}S$ along *e* is the parallel transport by the booklet 3-web Chern connection.

connection on TM

- Suppose $v = \eta^1 e_1 + \eta^2 e_2 + \eta^3 e_3 \in T_p S$ and a curve $\alpha : I \mapsto S$ $\alpha(0) = p$ does not passes through singular points of the 3-web.
- Define vector field $\eta(t) \in TM$ along α , such that $\eta^i = const$.
- The projection of $\eta(t)$ into $T_{\alpha(t)}S$ along *e* is the parallel transport by the booklet 3-web Chern connection.

singularity on Δ

connection on TM

- Suppose $v = \eta^1 e_1 + \eta^2 e_2 + \eta^3 e_3 \in T_p S$ and a curve $\alpha : I \mapsto S$ $\alpha(0) = p$ does not passes through singular points of the 3-web.
- Define vector field $\eta(t) \in TM$ along α , such that $\eta^i = const$.
- The projection of $\eta(t)$ into $T_{\alpha(t)}S$ along *e* is the parallel transport by the booklet 3-web Chern connection.

singularity on Δ

• The connection form of ODE $p^3 + A(x,y)p + B(x,y) = 0$ $\gamma = \frac{(2A^2Ax - 4A^2By + 6ABAy + 9BBx)}{4A^3 + 27B^2}dx + \frac{(4A^2Ay + 6ABx + 18BBy - 9BAx)}{4A^3 + 27B^2}dy$

geometry of Chern connection

connection on TM

- Suppose $v = \eta^1 e_1 + \eta^2 e_2 + \eta^3 e_3 \in T_p S$ and a curve $\alpha : I \mapsto S$ $\alpha(0) = p$ does not passes through singular points of the 3-web.
- Define vector field $\eta(t) \in TM$ along α , such that $\eta^i = const$.
- The projection of $\eta(t)$ into $T_{\alpha(t)}S$ along *e* is the parallel transport by the booklet 3-web Chern connection.

singularity on Δ

• The connection form of ODE $p^3+A(x,y)p+B(x,y)=0$ $\gamma = \frac{(2A^2Ax-4A^2By+6ABAy+9BBx)}{4A^3+27B^2}dx + \frac{(4A^2Ay+6ABx+18BBy-9BAx)}{4A^3+27B^2}dy$ • is not necessarily exact in a neighborhood U of $(x_0, y_0) \in \Delta$.

connection on TM

- Suppose $v = \eta^1 e_1 + \eta^2 e_2 + \eta^3 e_3 \in T_p S$ and a curve $\alpha : I \mapsto S$ $\alpha(0) = p$ does not passes through singular points of the 3-web.
- Define vector field $\eta(t) \in TM$ along α , such that $\eta^i = const$.
- The projection of $\eta(t)$ into $T_{\alpha(t)}S$ along *e* is the parallel transport by the booklet 3-web Chern connection.

singularity on Δ

- The connection form of ODE $p^3 + A(x,y)p + B(x,y) = 0$ $\gamma = \frac{(2A^2Ax - 4A^2By + 6ABAy + 9BBx)}{4A^3 + 27B^2} dx + \frac{(4A^2Ay + 6ABx + 18BBy - 9BAx)}{4A^3 + 27B^2} dy$
- is not necessarily exact in a neighborhood U of $(x_0, y_0) \in \Delta$.

Theorem

Booklet 3-web has holomorphic Chern connection.

connection on TM

- Suppose $v = \eta^1 e_1 + \eta^2 e_2 + \eta^3 e_3 \in T_p S$ and a curve $\alpha : I \mapsto S$ $\alpha(0) = p$ does not passes through singular points of the 3-web.
- Define vector field $\eta(t) \in TM$ along α , such that $\eta^i = const$.
- The projection of $\eta(t)$ into $T_{\alpha(t)}S$ along *e* is the parallel transport by the booklet 3-web Chern connection.

singularity on Δ

- The connection form of ODE $p^3 + A(x,y)p + B(x,y) = 0$ $\gamma = \frac{(2A^2Ax - 4A^2By + 6ABAy + 9BBx)}{4A^3 + 27B^2}dx + \frac{(4A^2Ay + 6ABx + 18BBy - 9BAx)}{4A^3 + 27B^2}dy$
- is not necessarily exact in a neighborhood U of $(x_0, y_0) \in \Delta$.

Theorem

Booklet 3-web has holomorphic Chern connection.

For the 1st canonical form of WDVV, $\gamma = 0$ holds true in adjusted flat coordinates of *M*, restricted on *S*.

Theorem

Cubic ODE with closed holomorphic Chern connection and an infinitesimal symmetry is locally equivalent to one of the list:

Theorem

Cubic ODE with closed holomorphic Chern connection and an infinitesimal symmetry is locally equivalent to one of the list: $y^{m_0}p^3 - p = 0$, with $X = (2 + m_0)x\partial_x + 2y\partial_y$, $Y = \partial_x$

Theore<u>m</u>

Cubic ODE with closed holomorphic Chern connection and an infinitesimal symmetry is locally equivalent to one of the list: $y_{p}^{m_0}p^3 - p = 0$, with $X = (2 + m_0)x\partial_x + 2y\partial_y$, $Y = \partial_x$

2 $p^3 + 2xp + y = 0$, with $X = 2x\partial_x + 3y\partial_y$

Theore<u>m</u>

Cubic ODE with closed holomorphic Chern connection and an infinitesimal symmetry is locally equivalent to one of the list: (a) $y^{m_0}p^3 - p = 0$, with $X = (2 + m_0)x\partial_x + 2y\partial_y$, $Y = \partial_x$ (c) $p^3 + 2xp + y = 0$, with $X = 2x\partial_x + 3y\partial_y$ (c) $(p - \frac{3}{2}x)(p^2 + \frac{2}{3}xp + y - \frac{2}{9}x^2) = 0$, with $X = x\partial_x + 2y\partial_y$

Theorem

Cubic ODE with closed holomorphic Chern connection and an infinitesimal symmetry is locally equivalent to one of the list: (a) $y^{m_0}p^3 - p = 0$, with $X = (2 + m_0)x\partial_x + 2y\partial_y$, $Y = \partial_x$ (c) $p^3 + 2xp + y = 0$, with $X = 2x\partial_x + 3y\partial_y$ (c) $(p - \frac{3}{2}x)(p^2 + \frac{2}{3}xp + y - \frac{2}{9}x^2) = 0$, with $X = x\partial_x + 2y\partial_y$ (c) $p^3 + 4x(y - \frac{4}{9}x^3)p + y^2 + \frac{64}{81}x^6 - \frac{32}{9}yx^3 = 0$, with $X = x\partial_x + 3y\partial_y$

Theore<u>m</u>

Cubic ODE with closed holomorphic Chern connection and an infinitesimal symmetry is locally equivalent to one of the list: (a) $y^{m_0}p^3 - p = 0$, with $X = (2 + m_0)x\partial_x + 2y\partial_y$, $Y = \partial_x$ (c) $p^3 + 2xp + y = 0$, with $X = 2x\partial_x + 3y\partial_y$ (c) $(p - \frac{3}{2}x)(p^2 + \frac{2}{3}xp + y - \frac{2}{9}x^2) = 0$, with $X = x\partial_x + 2y\partial_y$ (c) $p^3 + 4x(y - \frac{4}{9}x^3)p + y^2 + \frac{64}{81}x^6 - \frac{32}{9}yx^3 = 0$, with $X = x\partial_x + 3y\partial_y$ (c) $p^3 + y^2p = \frac{2}{\sqrt{27}}y^3 \tan(2\sqrt{3}x)$, with $X = y\partial_y$

Theore<u>m</u>

Cubic ODE with closed holomorphic Chern connection and an infinitesimal symmetry is locally equivalent to one of the list: • $v^{m_0}p^3 - p = 0$, with $X = (2 + m_0)x\partial_x + 2y\partial_y$, $Y = \partial_x$ 2 $p^3 + 2xp + y = 0$, with $X = 2x\partial_x + 3y\partial_y$ (p) $(p - \frac{3}{2}x)(p^2 + \frac{2}{3}xp + y - \frac{2}{9}x^2) = 0$, with $X = x\partial_x + 2y\partial_y$ **a** $p^3 + \frac{1}{4}x(y - \frac{4}{6}x^3)p + y^2 + \frac{64}{61}x^6 - \frac{32}{6}yx^3 = 0$, with $X = x\partial_x + 3y\partial_y$ **5** $p^3 + y^2 p = \frac{2}{\sqrt{27}} y^3 \tan(2\sqrt{3}x)$, with $X = y \partial_y$ **(a)** $p^3 + y^{3+m_0}p = y^{\frac{9+3m_0}{2}}F\left(\left[(m_0+1)\right]xy^{\frac{1+m_0}{2}}\right)$ with $X = (1 + m_0) x \partial_x - 2 v \partial_y$

Theorem

Cubic ODE with closed holomorphic Chern connection and an infinitesimal symmetry is locally equivalent to one of the list: • $y^{m_0}p^3 - p = 0$, with $X = (2 + m_0)x\partial_x + 2y\partial_y$, $Y = \partial_x$ 2 $p^3 + 2xp + y = 0$, with $X = 2x\partial_x + 3y\partial_y$ (a) $(p - \frac{3}{2}x)(p^2 + \frac{2}{2}xp + y - \frac{2}{6}x^2) = 0$, with $X = x\partial_x + 2y\partial_y$ **a** $p^3 + 4x(y - \frac{4}{9}x^3)p + y^2 + \frac{64}{81}x^6 - \frac{32}{9}yx^3 = 0$, with $X = x\partial_x + 3y\partial_y$ **5** $p^3 + y^2 p = \frac{2}{\sqrt{27}} y^3 \tan(2\sqrt{3}x)$, with $X = y \partial_y$ **(a)** $p^3 + y^{3+m_0}p = y^{\frac{9+3m_0}{2}}F\left(\left[(m_0+1)\right]xy^{\frac{1+m_0}{2}}\right)$ with $X = (1 + m_0) x \partial_x - 2y \partial_y$ where m_0 is non-negative integer and F(t) solves $[12+2t^2-9tF]\frac{dF}{dt}=\frac{2(m_0+3)}{m_0+1}(4+27F^2)$ with F(0)=0.

Theore<u>m</u>

Cubic ODE with closed holomorphic Chern connection and an infinitesimal symmetry is locally equivalent to one of the list: • $y^{m_0}p^3 - p = 0$, with $X = (2 + m_0)x\partial_x + 2y\partial_y$, $Y = \partial_x$ 2 $p^3 + 2xp + y = 0$, with $X = 2x\partial_x + 3y\partial_y$ (p $-\frac{3}{2}x)(p^2 + \frac{2}{3}xp + y - \frac{2}{9}x^2) = 0$, with $X = x\partial_x + 2y\partial_y$ **a** $p^3 + 4x(y - \frac{4}{9}x^3)p + y^2 + \frac{64}{81}x^6 - \frac{32}{9}yx^3 = 0$, with $X = x\partial_x + 3y\partial_y$ **5** $p^3 + y^2 p = \frac{2}{\sqrt{27}} y^3 \tan(2\sqrt{3}x)$, with $X = y \partial_y$ **(a)** $p^3 + y^{3+m_0}p = y^{\frac{9+3m_0}{2}}F\left(\left[(m_0+1)\right]xy^{\frac{1+m_0}{2}}\right)$ with $X = (1 + m_0) x \partial_x - 2y \partial_y$ where m_0 is non-negative integer and F(t) solves $[12+2t^2-9tF]\frac{dF}{dt}=\frac{2(m_0+3)}{m_0+1}(4+27F^2)$ with F(0)=0. The weights $[w_1 : w_2]$ determine uniquely the normal form.

Frobenius manifold	flat 3-webs	singularities	symmetries	Chern connection	classification

Suppose the web has a symmetry and its Chern connection form is closed and holomorphic.

Frobenius manifold	flat 3-webs	singularities	symmetries	Chern connection	classification

Suppose the web has a symmetry and its Chern connection form is closed and holomorphic.

• Does this web define Frobenius structure?

Frobenius manifold	flat 3-webs	singularities	symmetries	Chern connection	classification

Suppose the web has a symmetry and its Chern connection form is closed and holomorphic.

- Does this web define Frobenius structure?
- If it does, is this structure unique?

Frobenius manifold	flat 3-webs	singularities	symmetries	Chern connection	classification

Suppose the web has a symmetry and its Chern connection form is closed and holomorphic.

- Does this web define Frobenius structure?
- If it does, is this structure unique?
- If not, what are the moduli?

Frobenius manifold	flat 3-webs	singularities	symmetries	Chern connection	classification

Suppose the web has a symmetry and its Chern connection form is closed and holomorphic.

- Does this web define Frobenius structure?
- If it does, is this structure unique?
- If not, what are the moduli?

observation

Frobenius manifold	flat 3-webs	singularities	symmetries	Chern connection	classification

Suppose the web has a symmetry and its Chern connection form is closed and holomorphic.

- Does this web define Frobenius structure?
- If it does, is this structure unique?
- If not, what are the moduli?

observation

The construction is easily generalized to higher dimensions.

Frobenius manifold	flat 3-webs	singularities	symmetries	Chern connection	classification

Suppose the web has a symmetry and its Chern connection form is closed and holomorphic.

- Does this web define Frobenius structure?
- If it does, is this structure unique?
- If not, what are the moduli?

observation

The construction is easily generalized to higher dimensions. For n-dimensional Frobenius manifold, we get *n* commuting vector fields v_i in \mathbb{C}^{n-1} , satisfying $\sum_{i=1}^{n} v_i = 0$;

Frobenius manifold	flat 3-webs	singularities	symmetries	Chern connection	classification

Suppose the web has a symmetry and its Chern connection form is closed and holomorphic.

- Does this web define Frobenius structure?
- If it does, is this structure unique?
- If not, what are the moduli?

observation

The construction is easily generalized to higher dimensions. For n-dimensional Frobenius manifold, we get *n* commuting vector fields v_i in \mathbb{C}^{n-1} , satisfying $\sum_{i=1}^{n} v_i = 0$; a flat n-web of curves in \mathbb{C}^{n-1} , admitting a "linear" symmetry. Frobenius manifold

flat 3-webs

singularities

symmetries

Chern connection

classification

on a general classification of cubic ODEs

on a general classification of cubic ODEs

Curvature K of the solution 3-web is an obstacle for a general classification of implicit cubic ODEs.

Chern connection

classification

on a general classification of cubic ODEs

Curvature K of the solution 3-web is an obstacle for a general classification of implicit cubic ODEs.

• Implicit ODE F(x, y, p) = 0defines a surface in $\mathbb{C}^2 \times \mathbb{P}^1(\mathbb{C})$: $S := \{(x, y, p) : F(x, y, p) = 0\}.$

Chern connection

classification

on a general classification of cubic ODEs

Curvature K of the solution 3-web is an obstacle for a general classification of implicit cubic ODEs.

- Implicit ODE F(x, y, p) = 0 defines a surface in C² × P¹(C): S := {(x, y, p) : F(x, y, p) = 0}.
 Critical points form criminant
 - $C := \{(x, y, p) : F = F_p = 0\}.$

Chern connection

classification

on a general classification of cubic ODEs

Curvature K of the solution 3-web is an obstacle for a general classification of implicit cubic ODEs.

- Implicit ODE F(x, y, p) = 0defines a surface in $\mathbb{C}^2 \times \mathbb{P}^1(\mathbb{C})$: $S := \{(x, y, p) : F(x, y, p) = 0\}.$
- Critical points form criminant $C := \{(x, y, p) : F = F_p = 0\}.$

• Regularity condition: rank $((x, y, p) \mapsto (F, F_p)) = 2.$

Chern connection

classification

on a general classification of cubic ODEs

Curvature K of the solution 3-web is an obstacle for a general classification of implicit cubic ODEs.

- Implicit ODE F(x, y, p) = 0defines a surface in $\mathbb{C}^2 \times \mathbb{P}^1(\mathbb{C})$: $S := \{(x, y, p) : F(x, y, p) = 0\}.$
- Critical points form criminant $C := \{(x, y, p) : F = F_p = 0\}.$

• Regularity condition: $\operatorname{rank}((x, y, p) \mapsto (F, F_p)) = 2.$ $\Rightarrow S$ and C are smooth

Frobenius manifold

symmetries

partial classification result s and C are smooth

Theorem (AS'08)

If an implicit cubic ODE $p^3 + a(x, y)p^2 + b(x, y)p + c(x, y) = 0$ has a flat web of solutions and satisfy regularity condition at $m = (x_0, y_0, p_0) \in C \subset S$ then there is a local diffeomorphism at $\pi(m) = (x_0, y_0)$, reducing this ODE to:

partial classification result s and C are smooth

Theorem (AS'08)

If an implicit cubic ODE $p^3 + a(x, y)p^2 + b(x, y)p + c(x, y) = 0$ has a flat web of solutions and satisfy regularity condition at $m = (x_0, y_0, p_0) \in C \subset S$ then there is a local diffeomorphism at $\pi(m) = (x_0, y_0)$, reducing this ODE to:

• $p^3 + px - y = 0$ if p_0 is triple and C is Legendrian,

Chern connection

classification

partial classification result *s* and *C* are smooth

Theorem (AS'08)

If an implicit cubic ODE $p^3 + a(x, y)p^2 + b(x, y)p + c(x, y) = 0$ has a flat web of solutions and satisfy regularity condition at $m = (x_0, y_0, p_0) \in C \subset S$ then there is a local diffeomorphism at $\pi(m) = (x_0, y_0)$, reducing this ODE to:

• $p^3 + px - y = 0$ if p_0 is triple and *C* is Legendrian,

2
$$p^3 + 2xp + y = 0$$
 if p_0 is triple
and *C* is not Legendrian,

partial classification result s and C are smooth

Theorem (AS'08)

If an implicit cubic ODE $p^3 + a(x, y)p^2 + b(x, y)p + c(x, y) = 0$ has a flat web of solutions and satisfy regularity condition at $m = (x_0, y_0, p_0) \in C \subset S$ then there is a local diffeomorphism at $\pi(m) = (x_0, y_0)$, reducing this ODE to:

• $p^3 + px - y = 0$ if p_0 is triple and *C* is Legendrian,

P² = x if p₀ is double and C is not Legendrian,

partial classification result s and C are smooth

Theorem (AS'08)

If an implicit cubic ODE $p^3 + a(x, y)p^2 + b(x, y)p + c(x, y) = 0$ has a flat web of solutions and satisfy regularity condition at $m = (x_0, y_0, p_0) \in C \subset S$ then there is a local diffeomorphism at $\pi(m) = (x_0, y_0)$, reducing this ODE to:

• $p^3 + px - y = 0$ if p_0 is triple and *C* is Legendrian,

singularities

symmetries

Chern connection

classification

web theory founders

Blaschke, Wilhelm 1885-1962

Chern, S.-S. 1911-2004

S. Agafonov

Flat 3-webs via Frobenius manifolds