Deformations of exact and homogeneous Poisson pencils of hydrodynamic type

Paolo Lorenzoni (University of Milano-Bicocca)

Based on joint works with A. Arsie and with G. Falqui

"Geometrical Methods in Mathematical Physics" MSU 12-17/12/2011

Plan of the talk

- An example: the scalar case.
- Deformations of semisimple Poisson pencils of hydrodynamic type and their central invariants. (Dubrovin, Liu and Zhang).
- Deformations of exact, semisimple Poisson pencils of hydrodynamic type (joint work with Gregorio Falqui: to appear in Physica D).
- The case of non constant central invariants (joint work with A. Arsie: arXiv:1107.2327).

The scalar case

$$\omega_{\lambda} = \omega_2 - \lambda \omega_1 = u\delta'(x-y) + \frac{1}{2}u_x\delta(x-y) - \lambda\delta'(x-y)$$

It is exact:

$$\operatorname{Lie}_{\mathbf{e}}\omega_1 = 0$$
 $\operatorname{Lie}_{\mathbf{e}}\omega_2 = \omega_1.$

with $e = \frac{\partial}{\partial u}$.

It is homogeneous:

$$\operatorname{Lie}_{E}\omega_{1} = (d-2)\omega_{1}$$

 $\operatorname{Lie}_{E}\omega_{2} = (d-1)\omega_{2}$.

with d=0 and $E=u\frac{\partial}{\partial u}$.

$$\Pi_{\lambda}^{ij} = \omega_{\lambda} + \sum_{k=1}^{\infty} \epsilon^{2k} P_2^{(k)}.$$

Second order deformation (PL, 2002):

$$P_2^{(2)} = \left\{ \partial_x^2 \left(c_2 \delta^{(1)}(x - y) \right) + c_2 \delta^{(3)}(x - y) + (\partial_x c_2) \delta^{(2)}(x - y) \right\}$$

where $c_2 = c_2(u)$ is an arbitrary function.

Fourth order

$$P_2^{(4)} = \left\{ \partial_x^4 \left(c_4 \delta^{(1)}(x - y) \right) + c_4 \delta^{(5)}(x - y) + (\partial_x c_4) \delta^{(4)}(x - y) \right\}$$

where $c_4 = \frac{\partial}{\partial z}(c_2)^2$.

$$\Pi_{\lambda}^{ij} = \omega_{\lambda} + \sum_{k=1}^{\infty} \epsilon^{2k} P_2^{(k)}.$$

Second order deformation (PL, 2002):

$$P_2^{(2)} = \left\{ \partial_x^2 \left(c_2 \delta^{(1)}(x - y) \right) + c_2 \delta^{(3)}(x - y) + (\partial_x c_2) \delta^{(2)}(x - y) \right\}$$

where $c_2 = c_2(u)$ is an arbitrary function.

$$P_2^{(4)} = \left\{ \partial_x^4 \left(c_4 \delta^{(1)}(x - y) \right) + c_4 \delta^{(5)}(x - y) + (\partial_x c_4) \delta^{(4)}(x - y) \right\}$$

$$\Pi_{\lambda}^{ij} = \omega_{\lambda} + \sum_{k=1}^{\infty} \epsilon^{2k} P_2^{(k)}.$$

Second order deformation (PL, 2002):

$$P_2^{(2)} = \left\{ \partial_x^2 \left(c_2 \delta^{(1)}(x - y) \right) + c_2 \delta^{(3)}(x - y) + (\partial_x c_2) \delta^{(2)}(x - y) \right\}$$

where $c_2 = c_2(u)$ is an arbitrary function.

Fourth order:

$$P_2^{(4)} = \left\{ \partial_x^4 \left(c_4 \delta^{(1)}(x - y) \right) + c_4 \delta^{(5)}(x - y) + (\partial_x c_4) \delta^{(4)}(x - y) \right\}$$

where $c_4 = \frac{\partial}{\partial u}(c_2)^2$.

Sixth order (A. Arsie, PL, 2011):

$$\begin{split} P_{2}^{(6)} &= \\ &= \left\{ \partial_{x}^{6} \left(c_{6} \delta^{(1)}(x - y) \right) + c_{6} \delta^{(7)}(x - y) + (\partial_{x} c_{6}) \delta^{(6)}(x - y) \right\} \\ &+ \left\{ h \delta^{(3)}(x - y) + (\partial_{x} h) \delta^{(2)}(x - y) + \partial_{x}^{2} \left(h \delta^{(1)}(x - y) \right) \right\} \\ &+ \left\{ \partial_{x} \left((\partial_{x}^{3} g) \delta^{(3)}(x - y) \right) + (\partial_{x}^{2} g) \delta^{(5)}(x - y) + (\partial_{x}^{3} g) \delta^{(4)}(x - y) \right. \\ &+ \partial_{x}^{3} \left((\partial_{x}^{2} g) \delta^{(2)}(x - y) \right) \right\}, \end{split}$$

where

$$g = \frac{1}{2} \int \left\{ \frac{3}{2} c_2^2 \frac{\partial^3 c_2}{\partial u^3} + \left(\frac{\partial c_2}{\partial u} \right)^3 + \frac{19}{3} c_2 \frac{\partial^2 c_2}{\partial u^2} \frac{\partial c_2}{\partial u} \right\} du$$

"Geometrical Methods in Mathematical Physis

Sixth order (A. Arsie, PL, 2011):

$$\begin{split} P_{2}^{(6)} &= \\ &= \left\{ \partial_{x}^{6} \left(c_{6} \delta^{(1)}(x-y) \right) + c_{6} \delta^{(7)}(x-y) + (\partial_{x} c_{6}) \delta^{(6)}(x-y) \right\} \\ &+ \left\{ h \delta^{(3)}(x-y) + (\partial_{x} h) \delta^{(2)}(x-y) + \partial_{x}^{2} \left(h \delta^{(1)}(x-y) \right) \right\} \\ &+ \left\{ \partial_{x} \left((\partial_{x}^{3} g) \delta^{(3)}(x-y) \right) + (\partial_{x}^{2} g) \delta^{(5)}(x-y) + (\partial_{x}^{3} g) \delta^{(4)}(x-y) \right. \\ &+ \partial_{x}^{3} \left((\partial_{x}^{2} g) \delta^{(2)}(x-y) \right) \right\}, \end{split}$$

where

$$c_6 = -\frac{1}{2} \frac{\partial}{\partial u} \left(c_2^2 \, \frac{\partial c_2}{\partial u} \right),$$

$$g = \frac{1}{2} \int \left\{ \frac{3}{2} c_2^2 \frac{\partial^3 c_2}{\partial u^3} + \left(\frac{\partial c_2}{\partial u} \right)^3 + \frac{19}{3} c_2 \frac{\partial^2 c_2}{\partial u^2} \frac{\partial c_2}{\partial u} \right\} du$$

"Geometrical Methods in Mathematical Physis

Sixth order (A. Arsie, PL, 2011):

$$P_{2}^{(6)} =$$

$$= \left\{ \partial_{x}^{6} \left(c_{6} \delta^{(1)}(x - y) \right) + c_{6} \delta^{(7)}(x - y) + (\partial_{x} c_{6}) \delta^{(6)}(x - y) \right\}$$

$$+ \left\{ h \delta^{(3)}(x - y) + (\partial_{x} h) \delta^{(2)}(x - y) + \partial_{x}^{2} \left(h \delta^{(1)}(x - y) \right) \right\}$$

$$+ \left\{ \partial_{x} \left((\partial_{x}^{3} g) \delta^{(3)}(x - y) \right) + (\partial_{x}^{2} g) \delta^{(5)}(x - y) + (\partial_{x}^{3} g) \delta^{(4)}(x - y) \right\}$$

$$+ \partial_{x}^{3} \left((\partial_{x}^{2} g) \delta^{(2)}(x - y) \right) \right\},$$

where

$$c_{6} = -\frac{1}{2} \frac{\partial}{\partial u} \left(c_{2}^{2} \frac{\partial c_{2}}{\partial u} \right),$$

$$g = \frac{1}{2} \int \left\{ \frac{3}{2} c_{2}^{2} \frac{\partial^{3} c_{2}}{\partial u^{3}} + \left(\frac{\partial c_{2}}{\partial u} \right)^{3} + \frac{19}{3} c_{2} \frac{\partial^{2} c_{2}}{\partial u^{2}} \frac{\partial c_{2}}{\partial u} \right\} du$$

"Geometrical Methods in Mathematical Physis

$$+ \frac{176}{3} c_2 \left(\frac{\partial^3 c_2}{\partial u^3}\right)^2 + \frac{4018}{45} c_2 \left(\frac{\partial^4 c_2}{\partial u^4}\right) \frac{\partial^2 c_2}{\partial u^2} + \frac{1684}{45} c_2 \frac{\partial^5 c_2}{\partial u^5} \frac{\partial c_2}{\partial u}$$

$$+ \frac{14512}{45} \left(\frac{\partial c_2}{\partial u}\right) \left(\frac{\partial^2 c_2}{\partial u^2}\right) \frac{\partial^3 c_2}{\partial u^3} \right] u_x^4 + \left[\frac{3}{10} c_2^2 \frac{\partial^4 c_2}{\partial u^4} + \frac{2}{15} \left(\frac{\partial c_2}{\partial u^2}\right)^2 \frac{\partial^2 c_2}{\partial u^2} + \frac{1}{15} c_2 \left(\frac{\partial^2 c_2}{\partial u^2}\right)^2 + \frac{28}{15} c_2 \left(\frac{\partial^3 c_2}{\partial u^3}\right) \frac{\partial c_2}{\partial u} \right] u_{xxx} u_x$$

$$+ \left[\frac{139}{10} \left(\frac{\partial c_2}{\partial u}\right) \left(\frac{\partial^2 c_2}{\partial u^2}\right)^2 + \frac{178}{15} \left(\frac{\partial c_2}{\partial u}\right)^2 \frac{\partial^3 c_2}{\partial u^3} + \frac{21}{20} c_2^2 \frac{\partial^5 c_2}{\partial u^5} \right]$$

$$+ \frac{259}{30} c_2 \left(\frac{\partial^4 c_2}{\partial u^4}\right) \frac{\partial c_2}{\partial u} + 13 c_2 \left(\frac{\partial^2 c_2}{\partial u^2}\right) \frac{\partial^3 c_2}{\partial u^3} \right] u_{xx} u_x^2.$$

$$\frac{\text{GOIO LOYENZONI (University of NDeformations of exact and homogeneous Pois}}{23} \frac{\partial^2 c_2}{\partial u^2} + \frac{\partial^2 c_2}{\partial u^2} \frac{\partial^2 c_2}{\partial u^2} + \frac{\partial^2 c_2}{\partial u^2} + \frac{\partial^2 c_2}{\partial u^2} \frac{\partial^2 c_2}{\partial u^2} \frac{\partial^2 c_2}{\partial u^2} + \frac{\partial^2 c_2}{\partial u^2} \frac{\partial^2 c_2}{\partial u^2} + \frac{\partial^2 c_2}{\partial u^2} \frac{\partial^2 c_2}{\partial u^2} + \frac{\partial^2 c_2}{\partial u^2} \frac{\partial^2 c_2}{\partial u^2} \frac{\partial^2 c_2}{\partial u^2} + \frac{\partial^2 c_2}{\partial u^2} \frac{\partial^2 c_2}{\partial u^2} \frac{\partial^2 c_2}{\partial u^2} \frac{\partial^2 c_2}{\partial u^2} + \frac{\partial^2 c_2}{\partial u^2} \frac{\partial$$

 $+\frac{49}{15}c_{2}\left(\frac{\partial^{3}c_{2}}{\partial u^{3}}\right)\frac{\partial c_{2}}{\partial u}\right]u_{xx}^{2}+\left|\frac{254}{3}\left(\frac{\partial c_{2}}{\partial u}\right)^{2}\frac{\partial^{4}c_{2}}{\partial u^{4}}+\frac{17}{5}c_{2}^{2}\frac{\partial^{6}c_{2}}{\partial u^{6}}\right|$

 $h = \left| \frac{97}{60} c_2 \left(\frac{\partial^2 c_2}{\partial u^2} \right)^2 + \frac{8}{3} \left(\frac{\partial c_2}{\partial u} \right)^2 \frac{\partial^2 c_2}{\partial u^2} + \frac{21}{40} c_2^2 \frac{\partial^4 c_2}{\partial u^4} \right|$

Remarks

1. In the case c_2 =constant (KdV) the full pencil $\Pi_{\lambda} = P_2 - \lambda P_1$ is exact:

$$\operatorname{Lie}_{e}P_{2} = P_{1}, \qquad \operatorname{Lie}_{e}P_{1} = 0$$

where
$$e = \frac{\partial}{\partial u}$$
.

2. In the case $c_2 = u^D$:

$$\operatorname{Lie}_{E} P_{2}^{(2k)} = (kD - k - 1)P_{2}^{(2k)},$$

where
$$E = u \frac{\partial}{\partial u}$$
.

Local multivectors and Schouten bracket

 Λ_{loc}^{j} = space of local multivectors

$$\alpha^{i_1,\dots,i_j} = \sum_{l_2,\dots,l_j} A^{i_1,\dots,i_j}_{l_2,\dots,l_j}(u(x_1),u_{x_1},\dots)\delta^{(l_2)}(x_1-x_2)\dots\delta^{(l_j)}(x_1-x_j)$$

Associated superfunctional

$$\hat{\alpha} = \int \sum_{l_2, \dots, l_i} A_{l_2, \dots, l_j}^{i_1, \dots, i_j} (u(x_1), u_{x_1}, \dots) \theta_{i_1} \theta_{i_2}^{(l_2)} \dots \theta_{i_k}^{(l_j)} dx$$

Schouten bracket

$$[\alpha,\beta] := \{\hat{\alpha},\hat{\beta}\} = \int \left(\frac{\delta \hat{\alpha}}{\delta \theta^i} \frac{\delta \hat{\beta}}{\delta u^i} + (-1)^{|\alpha|} \frac{\delta \hat{\alpha}}{\delta u^i} \frac{\delta \hat{\beta}}{\delta \theta^i}\right) dx$$

where $|\alpha|$ is the parity of α .

A local bivector Π is called *Poisson bivector* iff $[\Pi, \Pi] = 0$.

Poisson bivectors of hydrodynamic type

PBHT (Dubrovin-Novikov):

$$\omega^{ij} = g^{ij}\delta'(x - y) - g^{il}\Gamma^{j}_{lk}u^{k}_{x}\delta(x - y)$$

Poisson bivectors of hydrodynamic type

PBHT (Dubrovin-Novikov):

$$\omega^{ij} = g^{ij}\delta'(x - y) - g^{il}\Gamma^{j}_{lk}u^{k}_{x}\delta(x - y)$$

- g is a flat metric.

Poisson bivectors of hydrodynamic type

PBHT (Dubrovin-Novikov):

$$\omega^{ij} = g^{ij}\delta'(x - y) - g^{il}\Gamma^{j}_{lk}u^{k}_{x}\delta(x - y)$$

- g is a flat metric.
- ullet $\Gamma^{j}_{l
 u}$ are the Christoffel symbols of the associated Levi-Civita connection.

Deformations of PBHT

A local bivector

$$P = \omega + \epsilon P^{(1)} + \epsilon^2 P^{(2)} + \dots + \epsilon^l P^{(l)} + \dots,$$

is called a deformation of ω if

$$[P, P] = 0,$$
 $\deg P^{(I)} = I + 2$

Degree:

$$\bullet \deg f(u) = 0$$

- ∂_x increases the degrees by one
- \bullet deg $\delta(x-y)=1$

This implies:

This implies.
$$(P^{(l)})^{ij} = \sum_{k=0}^{l+1} A_k^{ij}(u, u_x, \dots) \delta^{(l+1-k)}(x-y), \qquad \deg A_k^{ij} = k$$

Triviality of deformations and Poisson-Lichnerowicz cohomology

Theorem

All deformations are trivial: there exists a Miura transformation

$$u^i \to \tilde{u}^i = F_0^i(u) + \sum_k \epsilon^k F_k^i(u, u_x, \dots), \qquad \deg F_k^i = k$$

reducing $P = \omega + \epsilon P^{(1)} + \dots$ to its dispersionless limit ω .

The proof is by induction using

Theorem

$$H^{j}(\omega) = 0$$
 for all positive integers (Getzler in the general case, Degiovanni-Magri-Sciacca, Dubrovin-Zhang in the case $j = 1, 2$).

where

$$H^j(\omega) := rac{\ker\{d_\omega: \Lambda^j_{
m loc} o \Lambda^{j+1}_{
m loc}\}}{\inf\{d_\omega: \Lambda^{j-1}_{
m loc} o \Lambda^j_{
m loc}\}}, \qquad d_\omega := [\omega, \cdot]$$

"Geometrical Methods in Mathematical Physical LOYENZONI (University of NDeformations of exact and homogeneous Pois / 23

$$\omega_{\lambda}^{ij} = \omega_{2}^{ij} - \lambda \omega_{1}^{ij} = g_{2}^{ij}(u)\delta'(x - y) + \Gamma_{(2)k}^{ij} u_{x}^{k} \delta(x - y) + \\
- \lambda \left(g_{1}^{ij}(u)\delta'(x - y) + \Gamma_{(1)k}^{ij} u_{x}^{k} \delta(x - y) \right)$$

•
$$g_{\lambda}^{ij}=g_2^{ij}-\lambda g_1^{ij}$$
 is flat $orall \lambda$.

$$\bullet \ \Gamma_{(\lambda)k}^{ij} = \Gamma_{(2)k}^{ij} - \lambda \Gamma_{(1)k}^{ij}$$

$$\bullet \ d_{\omega_1}d_{\omega_2}+d_{\omega_2}d_{\omega_1}=0, \qquad (d_{\omega_1}=[\omega_1,\cdot],\ d_{\omega_2}=[\omega_2,\cdot])$$

$$g_1^{ij} = f^i(r^1, \dots, r^n)\delta_i^i, \qquad g_2^{ij} = r^i f^i(r^1, \dots, r^n)\delta_i^i.$$

$$\omega_{\lambda}^{ij} = \omega_{2}^{ij} - \lambda \omega_{1}^{ij} = g_{2}^{ij}(u)\delta'(x-y) + \Gamma_{(2)k}^{ij}u_{x}^{k}\delta(x-y) + \\ -\lambda \left(g_{1}^{ij}(u)\delta'(x-y) + \Gamma_{(1)k}^{ij}u_{x}^{k}\delta(x-y)\right)$$

- $g_1^{ij} = g_2^{ij} \lambda g_1^{ij}$ is flat $\forall \lambda$.
- $\Gamma^{ij}_{(\lambda)k} = \Gamma^{ij}_{(2)k} \lambda \Gamma^{ij}_{(1)k}$
- $d_{\omega_1}d_{\omega_2} + d_{\omega_2}d_{\omega_1} = 0$, $(d_{\omega_1} = [\omega_1, \cdot], d_{\omega_2} = [\omega_2, \cdot])$

Semisimplicity assumption: the roots (r^1, \ldots, r^n) of the equation $\det g_{\lambda} = 0$ are functional independent. They are called *canonical* coordinates. In canonical coordinates

$$g_1^{ij} = f^i(r^1, \dots, r^n)\delta_i^i, \qquad g_2^{ij} = r^i f^i(r^1, \dots, r^n)\delta_i^i.$$

Central invariants

Deformations of semisimple Poisson pencils of hydrodynamic type

$$\begin{split} \Pi_{\lambda}^{ij} &= \omega_{\lambda} + \epsilon \left[P_{\lambda}^{ij} \delta''(x-y) + \cdots \right] + \epsilon^{2} \left[Q_{\lambda}^{ij} \delta'''(x-y) + \cdots \right] + \mathcal{O}(\epsilon^{3}) \end{split}$$
 where $P_{\lambda}^{ij} = P_{2}^{ij} - \lambda P_{1}^{ij}$ and $Q_{\lambda}^{ij} = Q_{2}^{ij} - \lambda Q_{1}^{ij}$.

Central invariants:

$$c_i(r^i) = -\frac{1}{3 f^i} \operatorname{Res}_{\lambda = r^i} \operatorname{Tr} g_{\lambda}^{-1} A_{\lambda}$$

where the tensor A_{λ}^{ij} is defined by

$$A_{\lambda}^{ij} = Q_{\lambda}^{ij} + (g_{\lambda}^{-1})_{lk} P_{\lambda}^{li} P_{\lambda}^{kj}.$$

Theorem

Two deformations of the same Poisson pencil of hydrodynamic type are Miura equivalent iff they have the same central invariants (Dubrovin-Liu-Zhang).

Central invariants

Deformations of semisimple Poisson pencils of hydrodynamic type

$$\Pi_{\lambda}^{ij} = \omega_{\lambda} + \epsilon \left[P_{\lambda}^{ij} \delta''(x - y) + \cdots \right] + \epsilon^{2} \left[Q_{\lambda}^{ij} \delta'''(x - y) + \cdots \right] + \mathcal{O}(\epsilon^{3})$$
where $P_{\lambda}^{ij} = P_{2}^{ij} - \lambda P_{1}^{ij}$ and $Q_{\lambda}^{ij} = Q_{2}^{ij} - \lambda Q_{1}^{ij}$.

Central invariants:

$$c_i(r^i) = -\frac{1}{3 f^i} \operatorname{Res}_{\lambda = r^i} \operatorname{Tr} g_{\lambda}^{-1} A_{\lambda}$$

where the tensor A_{λ}^{ij} is defined by

$$A_{\lambda}^{ij} = Q_{\lambda}^{ij} + (g_{\lambda}^{-1})_{lk} P_{\lambda}^{li} P_{\lambda}^{kj}.$$

Theorem

Two deformations of the same Poisson pencil of hydrodynamic type are Miura equivalent iff they have the same central invariants (Dubrovin-Liu-Zhang).

Example 1: AKNS

$$\omega_2 + \epsilon P_2^{(1)} - \lambda \omega_1 = \begin{pmatrix} (2u\partial_x + u_x)\delta & v\delta' \\ \partial_x(v\delta) & -2\delta' \end{pmatrix} + \epsilon \begin{pmatrix} 0 & -\delta'' \\ \delta'' & 0 \end{pmatrix} - \lambda \begin{pmatrix} 0 & \delta' \\ \delta' & 0 \end{pmatrix}$$

In this case we have

$$g_{\lambda} = \begin{pmatrix} 2u & v - \lambda \\ v - \lambda & -2 \end{pmatrix}, \qquad A_{\lambda} = \frac{g_{\lambda}}{\det g_{\lambda}}$$

Canonical coordinates: $r^1 = v + \sqrt{-4u}$, $r^2 = v - \sqrt{-4u}$ Diagonal components of g_1 : $f^1 = \frac{8}{r_0 - r_1}$, $f^2 = \frac{8}{r_1 - r_2}$

$$c_{1} = -\frac{1}{3f^{1}} \operatorname{Res}_{\lambda = r^{1}} \operatorname{Tr} g_{\lambda}^{-1} A_{\lambda} = -\frac{1}{3f^{1}} \operatorname{Res}_{\lambda = r^{1}} \frac{2}{\det g_{\lambda}} = -\frac{1}{12}$$

$$c_{2} = -\frac{1}{3f^{2}} \operatorname{Res}_{\lambda = r^{2}} \operatorname{Tr} g_{\lambda}^{-1} A_{\lambda} = -\frac{1}{3f^{2}} \operatorname{Res}_{\lambda = r^{2}} \frac{2}{\det g_{\lambda}} = -\frac{1}{12}$$

Two component CH (Chen-Liu-Zhang, Falqui)

.

$$P_{\lambda} = \begin{pmatrix} (2u\partial_{x} + u_{x})\delta & v\delta' \\ \partial_{x}(v\delta) & -2\delta' \end{pmatrix} - \lambda \begin{pmatrix} 0 & \delta' - \epsilon\delta'' \\ \delta' + \epsilon\delta'' & 0 \end{pmatrix}$$

$$g_{\lambda} = \begin{pmatrix} 2u & v - \lambda \\ v - \lambda & -2 \end{pmatrix}, \qquad A_{\lambda} = \frac{\lambda^{2}g_{\lambda}}{\det g_{\lambda}}$$

$$c_{1} = -\frac{1}{3f^{1}}\operatorname{Res}_{\lambda = r^{1}}\operatorname{Tr} g_{\lambda}^{-1}A_{\lambda} = -\frac{1}{3f^{1}}\operatorname{Res}_{\lambda = r^{1}}\frac{2\lambda^{2}}{\det g_{\lambda}} = -\frac{(r^{1})^{2}}{12}$$

$$c_{2} = -\frac{1}{3f^{2}}\operatorname{Res}_{\lambda = r^{2}}\operatorname{Tr} g_{\lambda}^{-1}A_{\lambda} = -\frac{1}{3f^{2}}\operatorname{Res}_{\lambda = r^{2}}\frac{2\lambda^{2}}{\det g_{\lambda}} = -\frac{(r^{2})^{2}}{12}.$$

Exact Poisson pencil

The Poisson pencil

$$\Pi_{\lambda} = P_2 - \lambda P_1$$

is exact iff there exists a vector field Z, called Liouville vector field, such that

Exact Poisson pencil

The Poisson pencil

$$\Pi_{\lambda} = P_2 - \lambda P_1$$

is exact iff there exists a vector field Z, called Liouville vector field, such that

- $\text{Lie}_{Z}P_{2} = P_{1}$

Exact Poisson pencil

The Poisson pencil

$$\Pi_{\lambda} = P_2 - \lambda P_1$$

is exact iff there exists a vector field Z, called Liouville vector field, such that

- $\operatorname{Lie}_{Z}P_{2} = P_{1}$
- $\text{Lie}_{Z}P_{1} = 0$

Theorem

A semisimple Poisson pencil of hydrodynamic type is exact if and only if the condition

$$\sum_{k=1}^{n} \frac{\partial f^{i}}{\partial r^{k}} = 0.$$

is satisfied.

Moreover, in canonical coordinates all the components of the vector field Z are equal to 1 (i.e. Z = e).

Theorem

A semisimple Poisson pencil of hydrodynamic type is exact if and only if the condition

$$\sum_{k=1}^{n} \frac{\partial f^{i}}{\partial r^{k}} = 0.$$

is satisfied.

Moreover, in canonical coordinates all the components of the vector field Z are equal to 1 (i.e. Z = e).

Theorem

A semisimple Poisson pencil of hydrodynamic type is exact if and only if the condition

$$\sum_{k=1}^{n} \frac{\partial f^{i}}{\partial r^{k}} = 0.$$

is satisfied.

Moreover, in canonical coordinates all the components of the vector field Z are equal to 1 (i.e. Z = e).

- Lie_e $d_{\omega_1} d_{\omega_1} \text{Lie}_e = 0$

Theorem

A semisimple Poisson pencil of hydrodynamic type is exact if and only if the condition

$$\sum_{k=1}^{n} \frac{\partial f^{i}}{\partial r^{k}} = 0.$$

is satisfied.

Moreover, in canonical coordinates all the components of the vector field Z are equal to 1 (i.e. Z = e).

- Lie_e $d_{\omega_1} d_{\omega_1} \text{Lie}_e = 0$
- Lie_e $d_{\omega_2} d_{\omega_2} \text{Lie}_e = d_{\omega_1}$

Theorem

A semisimple Poisson pencil of hydrodynamic type is exact if and only if the condition

$$\sum_{k=1}^{n} \frac{\partial f^{i}}{\partial r^{k}} = 0.$$

is satisfied.

Moreover, in canonical coordinates all the components of the vector field Z are equal to 1 (i.e. Z = e).

- Lie_e $d_{\omega_1} d_{\omega_1} \text{Lie}_e = 0$
- Lie_e $d_{\omega_2} d_{\omega_2} \text{Lie}_e = d_{\omega_1}$
- Lie_e $d_{\omega_1} d_{\omega_2} d_{\omega_1} d_{\omega_2}$ Lie_e = 0

Costancy of the central invariants = exactness

Theorem

I et

$$\Pi_{\lambda} = P_2 - \lambda P_1 = \omega_2 + \sum_{k=1}^{\infty} \epsilon^{2k} P_2^{(2k)} - \lambda \left(\omega_1 + \sum_{k=1}^{\infty} \epsilon^{2k} P_1^{(2k)} \right).$$

be a Poisson pencil whose dispersionless limit $\omega_2 - \lambda \omega_1$ is semisimple and exact. Then its central invariants are constant if and only if it is exact.

Costancy of the central invariants implies exactness

Step 1: reduce Π_{λ} to the "standard form"

$$\Pi_{\lambda} = \omega_{\lambda} + \epsilon^{2} \operatorname{Lie}_{X_{(c_{1}, \dots, c_{n})}} \omega_{1} + \sum_{k=2}^{\infty} \epsilon^{2k} P_{2}^{(2k)}$$

where $X_{(c_1,...,c_n)}=d_{\omega_2}K+d_{\omega_1}H$ with

$$K = \sum_{i=1}^{n} \int c^{i}(r^{i}) r_{x}^{i} \log r_{x}^{i} dx, \qquad H = -\sum_{i=1}^{n} \int r^{i} c^{i}(r^{i}) r_{x}^{i} \log r_{x}^{i} dx$$

Step 2: show that $\operatorname{Lie}_{e} P_{2}^{(2)} = 0$. Indeed:

$$\operatorname{Lie}_{e}\operatorname{Lie}_{X_{(c_{1},\ldots,c_{n})}}\omega_{1}=\operatorname{Lie}_{[e,X_{(c_{1},\ldots,c_{n})}]}\omega_{1}=0$$

since $[e, X_{(c_1,...,c_n)}] = X_{(\frac{\partial c_1}{2},...,\frac{\partial c_n}{\partial c_n})}$.

Step 3: to construct a Miura transformation

$$\Pi_{\lambda} \to \tilde{\Pi}_{\lambda} = \omega_{\lambda} + \sum_{k=0}^{\infty} \epsilon^{2k} \tilde{P}_{2}^{(2k)}, \qquad \mathrm{Lie}_{e} \tilde{P}_{2}^{(2k)} = 0, \qquad k = 1, 2, \dots$$

Costancy of the central invariants implies exactness

Step 1: reduce Π_{λ} to the "standard form"

$$\Pi_{\lambda} = \omega_{\lambda} + \epsilon^{2} \operatorname{Lie}_{X_{(c_{1},...,c_{n})}} \omega_{1} + \sum_{k=2}^{\infty} \epsilon^{2k} P_{2}^{(2k)}$$

where $X_{(c_1,\ldots,c_n)} = d_{\omega_2}K + d_{\omega_1}H$ with

$$K = \sum_{i=1}^n \int c^i(r^i) r_x^i \log r_x^i dx, \qquad H = -\sum_{i=1}^n \int r^i c^i(r^i) r_x^i \log r_x^i dx$$

Step 2: show that $\operatorname{Lie}_{e}P_{2}^{(2)}=0$. Indeed:

$$\operatorname{Lie}_{e}\operatorname{Lie}_{X_{(c_{1},...,c_{n})}}\omega_{1}=\operatorname{Lie}_{[e,X_{(c_{1},...,c_{n})}]}\omega_{1}=0$$

since $[e, X_{(c_1, \dots, c_n)}] = X_{(\frac{\partial c_1}{\partial \cdot 1}, \dots, \frac{\partial c_n}{\partial \cdot d})}$.

Step 3: to construct a Miura transformation

$$\Pi_{\lambda} \to \tilde{\Pi}_{\lambda} = \omega_{\lambda} + \sum_{k=0}^{\infty} \epsilon^{2k} \tilde{P}_{2}^{(2k)}, \qquad \mathrm{Lie}_{e} \tilde{P}_{2}^{(2k)} = 0, \qquad k = 1, 2, \dots$$

Exactness implies the costancy of the central invariants

Step 1: reduce Π_{λ} to the form

$$\Pi_{\lambda} = \omega_{\lambda} + \epsilon^{2} \left(\operatorname{Lie}_{X_{(c_{1}, \dots, c_{n})}} \omega_{1} + d_{\omega_{2}} d_{\omega_{1}} \tilde{H} \right) + \sum_{k=2}^{\infty} \epsilon^{2k} P_{2}^{(2k)}$$

with $\operatorname{Lie}_{e}\Pi_{\lambda}=\omega_{1}$

Step 2: the last condition implies

$$\mathrm{Lie}_{e}\left(\mathrm{Lie}_{X_{(c_{1},...,c_{n})}}\omega_{1}+\textit{d}_{\omega_{2}}\textit{d}_{\omega_{1}}\tilde{\textit{H}}\right)=\textit{d}_{\omega_{1}}\left(X_{\left(\frac{\partial c_{1}}{\partial u^{1}},...,\frac{\partial c_{n}}{\partial u^{n}}\right)}-\textit{d}_{\omega_{2}}(\mathrm{Lie}_{e}\tilde{\textit{H}})\right)=0.$$

Then there exists \tilde{K} s.t.

$$X_{\left(rac{\partial c_1}{\partial u^1}, \ldots, rac{\partial c_n}{\partial u^n}
ight)} = d_{\omega_2}(\mathrm{Lie}_e \tilde{H}) + d_{\omega_1} \tilde{K}.$$

The above identity makes sense only if c^i =constant.

Non constant central invariants

Theorem

Let Π_{λ} a Poisson pencil with polynomial central invariants of maximal degree n-1 and suppose that its dispersionless limit ω_{λ} is exact. Then there exists a Miura transformation reducing the pencil to the form

$$\tilde{\Pi}_{\lambda} = \omega_2 + \sum_{k=1}^{\infty} \epsilon^{2k} \tilde{P}_2^{(2k)} - \lambda \omega_1$$

with

$$\operatorname{Lie}_{\mathsf{e}}^{nk-k+1} \tilde{P}_2^{(2k)} = 0, \quad k = 1, 2, \dots$$

Homogeneous Poisson pencils I

Euler vector field
$$E=\sum_{i=1}^n r^i \frac{\partial}{\partial r^i}$$

$$\mathrm{Lie}_E \omega_1 = (d-2)\omega_1$$

$$\mathrm{Lie}_E \omega_2 = (d-1)\omega_2.$$

Consequences

- $\operatorname{Lie}_{F} d_{\omega_{1}} d_{\omega_{1}} \operatorname{Lie}_{F} = (d-2) d_{\omega_{1}}$
- $\operatorname{Lie}_F d_{\omega_2} d_{\omega_2} \operatorname{Lie}_F = (d-1)d_{\omega_2}$
- $\text{Lie}_F d_{\omega_1} d_{\omega_2} d_{\omega_1} d_{\omega_2} \text{Lie}_F = (2d 3) d_{\omega_1} d_{\omega_2}$

Homogeneous Poisson pencils II

Theorem

Let Π_{λ} be a homogeneous Poisson pencil. Suppose that the central invariants are homogeneous functions of degree D. Then there exists a Miura transformation reducing Π_{λ} to the form

$$\tilde{\Pi}_{\lambda} = \omega_2 + \sum_{k=1}^{\infty} \epsilon^{2k} \tilde{P}_2^{(2k)} - \lambda \omega_1$$

with

$$\operatorname{Lie}_{\mathcal{E}} \tilde{\mathcal{P}}_{2}^{(2k)} = [(k+1)(d-1) + kD] \tilde{\mathcal{P}}_{2}^{(2k)}, \qquad k = 1, 2, \dots$$