Singular polynomials from Frobenius manifolds

Misha Feigin Joint work with Alexey Silantyev

School of Mathematics and Statistics, University of Glasgow

arXiv:1110.1946

Geometrical Methods in Mathematical Physics December 2011, Moscow

イロト イポト イヨト イヨト

Frobenius manifolds

Origins:

- (dispersionless) integrable systems
- topological field theories
- enumerative geometry
- singularity theory

- - 4 回 ト - 4 回 ト

Frobenius manifold [Dubrovin] is a manifold M with the following structures:

- M has a flat metric η
- ∀x ∈ M multiplication m : T_xM × T_xM → T_xM is defined, m is associative and commutative with covariantly constant identity e
- $T_x M$ is a Frobenius algebra: $\forall u, v, w \in T_x M$ one has $\eta(u \cdot v, w) = \eta(u, v \cdot w)$
- Existence of prepotential

Let t^1, \ldots, t^n be flat coordinates (that is $\eta = const$, n = dimM). Let $c_{\alpha\beta}^{\gamma}$ be structure constants for m: $\partial_{t^{\alpha}} \cdot \partial_{t^{\beta}} = c_{\alpha\beta}^{\gamma} \partial_{t^{\gamma}}$.

Let $c_{\alpha\beta\gamma} = c_{\alpha\beta}^{\varepsilon}\eta_{\varepsilon\gamma}$. Then $\exists F(t^1,\ldots,t^n)$ s.t. $c_{\alpha\beta\gamma} = \frac{\partial^3 F}{\partial t^{\alpha} \partial t^{\beta} \partial t^{\gamma}}$.

Quasihomogeneity

There exists an Euler vector field E s.t. $\mathcal{L}_E F = dF + quadratic$ terms for some $d \in \mathbb{R}$

Associativity equations

Note that associativity is a system of PDEs on F:

$$c^{\gamma}_{lphaeta}c^{\delta}_{\gammaarepsilon}=c^{\gamma}_{etaarepsilon}c^{\delta}_{\gammalpha}, \quad orall lpha,eta,\gamma,arepsilon,\delta=1,\ldots,n,$$

or, equivalently, $c_{\alpha\beta\tilde{\gamma}}\eta^{\tilde{\gamma}\gamma}c_{\gamma\varepsilon\delta} = c_{\beta\varepsilon\tilde{\gamma}}\eta^{\tilde{\gamma}\gamma}c_{\gamma\alpha\delta}$. These are the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations.

・ 回 と く ヨ と く ヨ と

Dubrovin's almost duality

Let *M* be a Frobenius manifold, \cdot - multiplication, η - flat metric, *E*-Euler field.

Define M^* - almost Frobenius manifold, with \star - multiplication, g - flat metric:

- $M^* = M \setminus \Sigma$, Σ some discriminant subset
- $u \star v = E^{-1} \cdot u \cdot v, \quad \forall u, v \in T_X M$
- g(ω₁, ω₂) = i_E(ω₁ · ω₂) ∀ω₁, ω₂ ∈ T^{*}_xM, where multiplication of 1-forms is defined by dt^α · dt^β = η^{δβ}c^α_{γδ}dt^γ

Note that *E* is the identity field for M^* , it is not covariantly constant for the Levi-Cevita connection ∇^g of the metric *g*, so M^* is not a Frobenius manifold.

Root system and Coxeter group

Let $V = \mathbb{C}^n$, let g(u, v) = (u, v) be the standard bilinear form in V. Let $\mathcal{R} \subset V$ be a Coxeter root system. That is

• $\forall \alpha \in \mathcal{R} \quad s_{\alpha}\mathcal{R} = \mathcal{R},$ where s_{α} is orthogonal reflection with respect to the hyperplane $(\alpha, x) = 0.$

• If
$$\alpha, \beta \in \mathcal{R}$$
 and $\alpha \sim \beta$ then $\alpha = \pm \beta$.

We suppose also that \mathcal{R} is irreducible, $(\alpha, \alpha) = 2 \ \forall \alpha \in \mathcal{R}$ and that $rank(\mathcal{R}) = n$. Let $W = \langle s_{\alpha} | \alpha \in \mathcal{R} \rangle$ be the corresponding Coxeter group.

Space of orbits

By Chevalley's theorem $\mathbb{C}[x_1, \ldots, x_n]^W \cong \mathbb{C}[y_1, \ldots, y_n]$, where y_i are homogeneous polynomials, deg $y_i(x) = d_i$ - degrees of the Coxeter group. We order $d_1 > d_2 > \ldots > d_n = 2$, $d_1 = h$ - Coxeter number of W. y_1, \ldots, y_n are coordinates on the orbit space $M = V/W \approx \mathbb{C}^n$ Define Saito metric $\eta^{"}(y) = \partial_{y_1} g^{"}(y)$, it is flat [Saito, Yano, Sekiguchi'80]. Fix Saito flat coordinates $t^1, \ldots, t^n \in \mathbb{C}[x_1, \ldots, x_n]^W$, deg $t^\alpha = d_\alpha$, by normalization $\eta^{\alpha\beta} = \delta^{\alpha+\beta,n+1}$ ($1 < \alpha, \beta < n$). Let $E = \sum_{i=1}^{n} x_i \frac{\partial}{\partial x_i} = \sum_{i=1}^{n} d_i y_i \frac{\partial}{\partial y_i}$ – Euler vector filed. Identity field $e = \frac{\partial}{\partial v_1}$.

イロト イポト イヨト イヨト

Theorem (Dubrovin'94, 04)

M is a Frobenius manifold; prepotential *F* is polynomial in the Saito coordinates.

The almost dual prepotential
$$F^* = \frac{1}{2} \sum_{\alpha \in \mathcal{R}_+} (\alpha, x)^2 \log(\alpha, x)$$
.

Remark

Saito flat coordinates are known explicitly for any Coxeter group W:

- [Saito, Yano, Sekiguchi'80], $W \neq E_7, E_8$
- [Abriani/Talamini'09/10], $W = E_7, E_8$

イロト イポト イヨト イヨト

Solutions to WDVV equations of type $F^* = \sum_{\alpha \in \mathcal{A}} (\alpha, x)^2 \log(\alpha, x)$ have been studied:

- Seiberg-Witten theory, [Marshakov, Mironov, Morozov] 1997
- \mathcal{A} is a root system [Martini-Gragert'99]
- Geometrical reformulation of WDVV as ∨-systems [Veselov];
 n-parameter deformations of classical Coxeter rank *n* root systems [Chalykh, V] 1999-2001
- Closure under restriction and taking subsystems, almost duality on the discriminant strata, solutions from superalgebras Lie, rank 3 study [F, Veselov] 2006-07
- Relation of WDVV and superconformal mechanics [Wyllard'00; Bellucci, Galajinsky, Latini'05]
- Superconformal extensions for particular solutions of WDVV of this type [Galajinsky,Krivonos, Lechtenfeld, Polovnikov] 2008-2011
- rank 3 solutions with small number of vectors [Lectenfeld, Schwerdtfeger, Thrigen] 2011

Saito coordinates in type A

Example

Let $\mathcal{R} = \mathcal{A}_n \subset \mathbb{C}^{n+1}$ be given in its standard embedding:

• $V \subset \mathbb{C}^{n+1}$ is defined by $\sum_{i=1}^{n+1} z_i = 0$ where z_i are standard coordinates in \mathbb{C}^{n+1}

•
$$\mathcal{R} = \{\pm (e_i - e_j) | 1 \le i < j \le n+1\} \subset V$$

Define

$$s^{\alpha} = \operatorname{Res}_{z=\infty} \prod_{i=1}^{n+1} (z - z_i)^{\frac{\alpha}{n+1}} dz = \operatorname{Res}_{u=0} \frac{\prod_{i=1}^{n+1} (1 - z_i u)^{\frac{\alpha}{n+1}}}{u^{\alpha+2}}$$
for $\alpha = 1, \ldots, n$.
Then $t^{\alpha} = \kappa_{\alpha} s^{\alpha}|_{V}$ for some $\kappa_{\alpha} \in \mathbb{R}$.

For
$$n = 3$$
, $F = \frac{(t^1)^2 t^3 + t^1 (t^2)^2}{2} + \frac{(t^2)^2 (t^3)^2}{4} + \frac{(t^3)^5}{60}$

Э

Twisted periods

Definition (Dubrovin'04)

Fix $c \in \mathbb{C}$. A locally defined function Q = Q(x) is called twisted period if the following system of Gauss-Manin equations holds:

$$\frac{\partial^2 Q}{\partial x_i \partial x_j} = c \sum_{k=1}^n \frac{\partial^3 F^*}{\partial x_i \partial x_j \partial x_k} \frac{\partial Q}{\partial x_k}, \quad 1 \le i, j \le n.$$

Equivalently, twisted periods Q satisfy $\nabla^{g,c}(dQ) = 0$ where $\nabla^{g,c}$ is the flat symmetric Dubrovin connection on M^* , namely, for any $u, v \in TM^*$ $\nabla^{g,c}_u v = \nabla^g_u v + cu * v$.

Locally there exist n independent twisted periods. We are interested in twisted periods Q which are W-invariant polynomials. They exist for special values of the parameter c only.

Observation: The Saito polynomial $Q = t^{\beta}$, $1 \le \beta \le n$ is a twisted period with $c = \frac{d_{\beta}-1}{h}$. **Generalisation**: Let $m \in \mathbb{Z}_+$, choose β , $1 \le \beta \le n$. Define

$$Q = \sum_{\alpha=1}^{n} d_{\alpha} \zeta_{\alpha}^{(m)} t^{\alpha}, \qquad (1)$$

where $\zeta_{\alpha}^{(m)}$ is the α -th component of the covector $\zeta^{(m)} = \zeta^{(0)} \prod_{j=1}^{m} U(\frac{d_{\beta}-1}{h}+j+\Lambda)^{-1}$, where $\zeta^{(0)} = (0, \dots, 0, 1, 0, \dots, 0)$ (1 on the β -th place), $\Lambda = Diag(\frac{1-d_1}{h}, \dots, \frac{1-d_n}{h})$, and U is the matrix $U_{\alpha}^{\beta} = g^{\beta\gamma}\eta_{\gamma\alpha} = g^{\beta,n+1-\alpha} = \sum_{a=1}^{n} \frac{\partial t^{\beta}}{\partial x^{a}} \frac{\partial t^{n+1-\alpha}}{\partial x^{a}}$.

Theorem (F., Silantyev'11)

Let $Q \in \mathbb{C}[x_1, ..., x_n]^W$ be a twisted period. Then $c = \frac{d_\beta - 1}{h} + m$ for some $m \in \mathbb{Z}_+$ and some degree d_β of W. Further, Q is given by a multiple of (1) (or by a linear combination of polynomials (1) corresponding to the same c if W has multiple degrees).

Dunkl operators

Let $c \in \mathbb{C}$, $\xi \in V$. Define $\nabla_{\xi} = \partial_{\xi} - c \sum_{\alpha \in \mathcal{R}_+} \frac{(\alpha, \xi)}{(\alpha, x)} (1 - s_{\alpha})$. Then $[\nabla_{\xi}, \nabla_{\eta}] = 0$ for any $\xi, \eta \in V$ [Dunkl'89] Note that $\nabla_{\xi} : \mathbb{C}[x] \to \mathbb{C}[x]$, where $\mathbb{C}[x] \equiv \mathbb{C}[x_1, \dots, x_n]$

Definition (Dunkl, de Jeu, Opdam'94)

A polynomial p(x) is called singular if $\nabla_{\xi} p(x) = 0$ for any $\xi \in V$.

Define the rational Cherednik algebra [Etingof,Ginzburg'02] $H_c(W) = \langle \mathbb{C}[x], \mathbb{C}[\nabla], \mathbb{C}W \rangle$ Then $\mathbb{C}[x]$ is a module for $H_c(W)$; it is irreducible for generic c. $\mathbb{C}[x]$ is reducible if and only if $c - \frac{j}{d_i} \in \mathbb{N}$ for some degree d_i and for some $j, 1 \leq j \leq d_i - 1$ [DJO].

Singular polynomials and $H_c(W)$ -modules

Singular polynomials correspond to submodules of $\mathbb{C}[x]$:

- Let M ⊂ C[x] be H_c(W)-invariant. Then M = ⊕_{i≥0}M_i, where M_i consists of homogeneous polynomials of degree i. Let k be such that M_i = 0 for i < k, and M_k ≠ 0. Then M_k consists of singular polynomials.
- On the other hand, if p(x) is singular then
 N = ⟨wq(x)p(x)|w ∈ W, q(x) ∈ C[x]⟩
 is a non-trivial submodule of C[x].

In type A all singular polynomials are known [Dunkl'05] In type A the spaces N provide all submodules of $\mathbb{C}[x]$ [Etingof, Stoica'09]

イロト イポト イヨト イヨト

Saito polynomials give singular polynomials

Proposition (F., Silantyev'11) $q(x) = \partial_{\xi} t^{\beta}$ is singular with $c = \frac{d_{\beta}-1}{b}$ $\forall \xi \in V, \beta = 1, ..., n.$

Proposition (F., Silantyev'11)

For any $\xi \in V$, $eta = 1, \ldots, n$ the polynomial

$$q(x) = \sum_{a,\alpha=1}^{n} \frac{1}{d_{\beta} - d_{\alpha} + h} \frac{\partial t^{\beta}}{\partial x^{a}} \frac{\partial t^{n+1-\alpha}}{\partial x^{a}} \partial_{\xi} t^{\alpha}$$

is singular with the parameter $c = \frac{d_{\beta}-1}{h} + 1$.

・ロト ・回ト ・ヨト ・ ヨト

Further shifting

Let $m \in \mathbb{Z}_+$, choose β , $1 \le \beta \le n$, and $\xi \in V$. Define $q(x) = \sum_{\alpha=1}^n \zeta_{\alpha}^{(m)} \partial_{\xi} t^{\alpha}$, where $\zeta_{\alpha}^{(m)}$ is the α -th component of the covector $\zeta^{(m)} = \zeta^{(0)} \prod_{j=1}^m U(\frac{d_{\beta}-1}{h} + j + \Lambda)^{-1}$, where $\zeta^{(0)} = (0, \dots, 0, 1, 0, \dots, 0)$ (1 on the β -th place), $\Lambda = Diag(\frac{1-d_1}{h}, \dots, \frac{1-d_n}{h})$, and U is the matrix $U_{\alpha}^{\beta} = g^{\beta\gamma}\eta_{\gamma\alpha} = g^{\beta,n+1-\alpha} = \sum_{a=1}^n \frac{\partial t^{\beta}}{\partial x^a} \frac{\partial t^{n+1-\alpha}}{\partial x^a}$.

Theorem (F., Silantyev'11)
$$q(x)$$
 is singular for $c = \frac{d_{\beta}-1}{h} + m$.

イロト イポト イヨト イヨト

Theorem (F., Silantyev'11)

This construction exhausts all the singular polynomials in the isotypic component of the reflection representation. Equivalently, any such singular polynomial q(x) has the form $q = \partial_{\xi}Q$ where $Q \in \mathbb{C}[x_1, \ldots, x_n]^W$ is a twisted period, for some $\xi \in V$.

- 4 同 2 4 日 2 4 日 2

Connection to Calogero-Moser systems

Take $L = \sum_{i=1}^{n} \nabla_{e_i}^2$. Then $L|_{C[x]^W} = \Delta - \sum_{\alpha \in \mathcal{R}_+} \frac{2c}{(\alpha, x)} \partial_{\alpha}$ is the Calogero-Moser operator [Heckman'91] Further $\forall \sigma \in \mathbb{C}[x]^W$

$$L_{\sigma} = \sum_{i=1}^{n} \sigma(\nabla_{e_i}) : \mathbb{C}[x]^{W} \to \mathbb{C}[x]^{W}$$

is the quantum integral for L: $[L, L_{\sigma}] = 0$. More generally, $[L_{\sigma}, L_{\tau}] = 0 \ \forall \sigma, \tau \in \mathbb{C}[x]^{W}$, and $L = L_{\sum x_{i}^{2}}$.

Proposition (F., Silantyev'11)

The Saito polynomials t^{β} satisfy $L_{\sigma}t^{\beta} = 0$ $\forall \sigma \in \mathbb{C}[x]^{W}$ if $c = (d_{\beta} - 1)/h$. More generally, $L_{\sigma}Q = 0$ if $c = (d_{\beta} - 1)/h + m$.

Bosonic potential in supersymmetric mechanics

We have $q(x) = \partial_{\xi}Q(x)$ where $Q = \sum_{\alpha=1}^{n} d_{\alpha}\zeta_{\alpha}^{(m)}t^{\alpha}$. For example, $Q = t^{\beta}$ when m = 0 (i.e. $c = \frac{d_{\beta}-1}{h}$, $\beta = 1, ..., n$). This gives $D(2, 1; \alpha)$ superconformal mechanical system with bosonic potential V_B proportional to

$$\frac{1}{Q^2}\sum_{i=1}^n (\frac{\partial Q}{\partial x^i})^2$$

at $\alpha = -\frac{1}{2}(d_{\beta} + hm)$. Conformal mechanics: $H = \frac{1}{2}\sum p_i^2 + V_B(x)$ is a part of the so(1,2) conformal algebra, [D, H] = -iH, [H, K] = 2iD, [D, K] = iK, where $D = -\frac{1}{4}(x^ip_i + p_ix^i), K = \frac{1}{2}x^ix^i$ (here $[x^i, p_j] = i\delta_j^i$).

イロト イポト イヨト イヨト

There is a $\mathcal{N} = 4$ supersymmetric extension of the symmetry algebra so(1,2) to the superalgebra $D(2,1;\alpha)$ where H is replaced with

$$\widetilde{H}=H+V_{\psi}.$$

The additional part of the potential V_{ψ} depends on 4n fermionic variables. It is defined in terms of the solution F^* of WDVV equations and in terms of the twisted period Q (c.f. [Krivonos, Lectenfeld, 2010])

Sketch of proofs

1. If q(x) is singular and q(x) generates a reflection representation of the Coxeter group W then $q = \partial_{\xi} Q$ for some $Q \in \mathbb{C}[x]^{W}$, and for some vector $\xi \in V$.

2. Let $Q \in \mathbb{C}[x]^{W}$. Then $\partial_{\xi}Q$ is singular if and only if Q is a twisted period:

$$\frac{\partial^2 Q}{\partial x_i \partial x_j} = c \sum_{k=1}^n \frac{\partial^3 F^*}{\partial x_i \partial x_j \partial x_k} \frac{\partial Q}{\partial x_k} = c \sum_{\substack{k=1\\\gamma \in \mathcal{R}_+}}^n \frac{\gamma_i \gamma_j \gamma_k}{(\gamma, x)} \frac{\partial Q}{\partial x_k}, \quad 1 \le i, j \le n$$

3.[Dubrovin'04] Q is a twisted period if and only if the following equations hold

$$\partial_{t^{\alpha}}\zeta(t) U = \zeta(t)(c+\Lambda)c_{\alpha}, \quad 1 \le \alpha \le n,$$
 (2)

where $\zeta(t) = (\partial_{t^1}Q(t), \ldots, \partial_{t^n}Q(t))$, and c_{α} is the matrix $(c_{\alpha})^{\gamma}_{\beta} = c^{\gamma}_{\alpha\beta}$ - the tensor of structure constants in the flat coordinates $\beta \in \mathbb{R}$ and $\beta \in \mathbb{R}$.

4. [Dubrovin'04] If $\zeta(t)$ is a solution of (2) then $\partial_{t^1}\zeta(t)$ is also a solution of (2) with c replaced by c-1. Thus if Q is a twisted period with parameter c then $\partial_{t^1}Q$ is a twisted period with parameter c-1. 5. $Q = t^{\beta}$ satisfies (2) if $c = \frac{d_{\beta}-1}{h}$. 6. Let $\zeta(t)$ be a solution of the system (2). Assume that $c \neq \frac{d_{\alpha}-1}{h} - 1$

for all $\alpha = 1, \ldots, n$. Then

$$\widehat{\zeta}(t) = \zeta(t)U(c+1+\Lambda)^{-1}$$

is a solution of the system (2) with c replaced by c + 1.

Thank you for your attention !

・ロン ・回と ・ヨン ・ヨン

æ