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Mercator’s navigation

Mercator 1569. Rhumb lines - not the shortest, but easy to follow.

Mercator paths are unparametrised geodesics = images of great
circles on a sphere.
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A problem of Roger Liouville (1889)

Cover a plane with curves, one curve through each point in each direction.
How can you tell whether these curves are geodesics of some metric?

Path geometry: y′′ = F(x, y, y′). (Douglas 1936).

1 Unparametrised geodesics of affine connection: ∂4F/∂(y′)4 = 0
2 Levi–Civita connection of g = Edx2 + 2Fdxdy +Gdy2?

Bryant, MD, Eastwood ( J. Diff. Geom 2009). Solution to the
Liouville’s problem: Necessary and sufficient conditions for a family of
paths to extremize a distance.

Twistor theory
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Mercator Projection

Parallel at latitude θ is stretched by cos (θ)−1

Conformal condition (straight lines = loxodromes) dx/dθ = cos (θ)−1.
Edward Wright (1599)

y = φ, x =

∫
cos (θ)−1dθ = ln

(
(tan (θ) + cos (θ)−1

)
.

Images of great circles = solutions to the Mercator ODE

y′′ = tanh (x)
(
y′ + (y′)3

)

g = cosh (x)−2(dx2 + dy2)

.
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Twistor space

Great circles |r| = 1, r · n = 0←→ points n ∈ S2.
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U=S T=S
2 2

Projective duality. [X,Y, Z] ∈ RP2, [P,Q,R] ∈ RP2∗.

XP + Y Q+ ZR = 0.

xp+ yq + 1 = 0, p = P/R, q = Q/R x = X/Z, y = Y/Z.

Dunajski (DAMTP, Cambridge) Liouville’s Problem Moscow, December 2011 5 / 13



Twistor space

Great circles |r| = 1, r · n = 0←→ points n ∈ S2.

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

U=S T=S
2 2

Projective duality. [X,Y, Z] ∈ RP2, [P,Q,R] ∈ RP2∗.

XP + Y Q+ ZR = 0.

xp+ yq + 1 = 0, p = P/R, q = Q/R x = X/Z, y = Y/Z.

Dunajski (DAMTP, Cambridge) Liouville’s Problem Moscow, December 2011 5 / 13



Twistor space

Great circles |r| = 1, r · n = 0←→ points n ∈ S2.

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

U=S T=S
2 2

Projective duality. [X,Y, Z] ∈ RP2, [P,Q,R] ∈ RP2∗.

XP + Y Q+ ZR = 0.

xp+ yq + 1 = 0, p = P/R, q = Q/R x = X/Z, y = Y/Z.

Dunajski (DAMTP, Cambridge) Liouville’s Problem Moscow, December 2011 5 / 13



Twistor space

Nonlinear duality. H(x, y, p, q) = 0

�
�
�
�

�
�
�
�

Point

Point

Curve

 Curve

U  T

Implicit function theorem y = Y (x, p, q).

Differentiate, eliminate (p, q)

y′′ = F(x, y, y′).

Complexify: C ⊂ U is geodesic iff C ∼= CP1 ⊂ T is rational with
normal bundle O(1).

C is a metric geodesic iff there exists a preferred section of κT
−2/3

where κT is the holomorphic canonical bundle of T .
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Projective Structures

A projective structure on an open set U ⊂ Rn is an equivalence class
of torsion free connections [Γ]. Two connections Γ and Γ̂ are
equivalent if they share the same unparametrised geodesics.

The geodesic flows project to the same foliation of P(TU). The
analytic expression for this equivalence class is

Γ̂c
ab = Γc

ab + δa
cωb + δb

cωa, a, b, c = 1, 2, . . . , n

for some one–form ω = ωadx
a.

Two dimensions–link with second order ODEs:

1 ẍc + Γcabẋ
aẋb = 0, where xa(t) = (x(t), y(t)).

2 Eliminate the parameter t: second order ODE

d2y

dx2
= A3

(dy
dx

)3
+A2

(dy
dx

)2
+A1

(dy
dx

)
+A0, Ai = Ai(x, y)

where A0 = −Γ2
11, A1 = Γ1

11 − 2Γ2
12, A2 = 2Γ1

12 − Γ2
22, A3 = Γ1

22.
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1 ẍc + Γcabẋ
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Metrisability Problem

What are the necessary and sufficient local conditions on a connection
Γc
ab for the existence of a one form ωa and a symmetric

non–degenerate tensor gab such that the projectively equivalent
connection Γc

ab + δa
cωb + δb

cωa is the Levi-Civita connection for gab?

Summary of the Results in 2D - Bryant, MD, Eastwood. JDG (2009).

1 Neccesary condition: obstruction of order 5 in the components of a
connection in a projective class. Point invariant for a second order
ODE whose integral curves are the geodesics of [Γ] or a weighted scalar
projective invariant of the projective class.

2 Sufficient conditions: In the generic case vanishing of two invariants of
order 6.
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Prolongation I

Metric g = E(x, y)dx2 + 2F (x, y)dxdy +G(x, y)dy2 gives

A0 = (E∂yE − 2E∂xF + F∂xE) (EG− F 2)−1/2,

A1 = (3F∂yE +G∂xE − 2F∂xF − 2E∂xG) (EG− F 2)−1/2,

A2 = (2F∂yF + 2G∂yE − 3F∂xG− E∂yG) (EG− F 2)−1/2,

A3 = (2G∂yF −G∂xG− F∂yG) (EG− F 2)−1/2, (∗)

First order homogeneous differential operator with 1D fibres
σ0 : J1(S2(T ∗U)) −→ J0(Pr(U)). Differentiating (∗) prolongs this
operator to bundle maps σk : Jk+1(S2(T ∗U)) −→ Jk(Pr(U)).

Theorem: Solutions to (∗)↔ parallel section of a linear connection D
on a rank six vector bundle E → U .
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Prolongation II

k (Jk+1(S2(T ∗U))) (Jk(Pr(U))) (ker σk) obstructions
0 9 4 5 0
1 18 12 6 0
2 30 24 6 0
3 45 40 5 0
4 63 60 3 0
5 84 84 1 1 = 1
6 108 112 1 5 = 3 + 2
7 135 144 1 10 = 6 + 6− 2

No obstruction on a projective structure before the order 5.

5-jets. At least a 1D fiber, at most 83D image. First obstruction M .

6-jets. Dimension 112− 3 = 109. The image of the 7-jets of metric
structures can have dimension 108− 1 = 107. Two more 6th order
obstructions E1, E2.

7-jets. The image has codimension 10. Two relations between the
first derivatives of E1 = E2 = 0 and the second derivatives of the 5th
order equation M = 0. The system is involutive.
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structures can have dimension 108− 1 = 107. Two more 6th order
obstructions E1, E2.

7-jets. The image has codimension 10. Two relations between the
first derivatives of E1 = E2 = 0 and the second derivatives of the 5th
order equation M = 0. The system is involutive.
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The importance of 6th order conditions

One parameter family of projective structures

d2y

dx2
= c ex + e−x

(dy
dx

)2
.

5th order condition holds if c is a root of a quartic

864 c4 − 792 c3 − 3960 c2 − 4750 c− 1875 = 0.

The 6th order conditions are satisfied iff

1728 c3 − 8856 c2 − 2100 c+ 625 = 0,

7776 c5 + 19656 c4 − 21852 c3 − 42054 c2 − 28725 c− 11125 = 0.

These three polynomials do not have a common root. We can make
the 5th order obstruction vanish, but the two 6th order obstructions
E1, E2 do not vanish.
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Characteristic initial value problem for dKP

Large class of systems (Zakharov, . . . , Manakov–Santini–Grinevich.)

(ut − uux)x = uyy, u = u(x, y, t). Dispersionless KP.
Twistor correspondence ( MD, Mason, Tod):

1 One to one correspondence between equivalence classes of solutions to
dKP and complex two–folds T with a three parameter family of
rational curves with normal bundle O(2) an a section of κT

−1/4.
2 Einstein–Weyl structure: h = dy2 − 4dxdt− 4udt2, ν = −4uxdt.

Cauchy problem (work in progress)

1 Surface t = 0↔ two–parameter family of curves through a point in T .
2 Projective structure

L0 = ∂y + λ∂x − ux(x, y, t = 0)∂λ,
d2x

dy2
= −∂u(x, y, t = 0)

∂x
.

3 Dispersionless Lax pair = 1-parameter family of projective structures.

Lt = ∂y +λ∂x−ux(x, y, t)∂λ, M = ∂t + (λ2 +u)∂x + (uy −λux)∂λ.

4 Boundary cond: Asymptotically flat projective structure uxxx ≈ 0.
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Different problems - similar formalism

This talk: Given a (projective) connection can you find a metric?

General approach to overdetermined systems: prolong, construct
connection on the prolongation vector bundle, restrict its holonomy.
Applicable to other can you find type problems:

1 Can you find a Kähler metric in a given four–dimensional conformal
class? MD, Tod. Math. Proc. Cam. Phil. Soc. (2010).

2 Can you find Euclidean supersymmeries (and how many) in a given
cosmological Einstein–Maxwell instanton space–time? MD, Hartnoll.
CQG (2007), MD, Gutowski, Sabra, Tod. CQG (2011), JHEP (2011).

Projective structures on characteristic initial data surfaces for
dispersionless integrable systems.

Thank You.
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