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Introduction

The Novikov-Veselov [1984] equation is defined by (U and ¢ is
real) [Athorne, Dubrovsky, Matveev, Nimmo, Salle, Y.Ohta]

Uy = 0U +32U —30,(VU) —39,(VU), (1)
2,V = 0,U.
When z = 7 = z, we get the KdV equation (U =V = V)
Up = 2Upge — 120U,
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Introduction

The Novikov-Veselov [1984] equation is defined by (U and ¢ is
real) [Athorne, Dubrovsky, Matveev, Nimmo, Salle, Y.Ohta]

Uy = 0U +32U —30,(VU) —39,(VU), (1)
2,V = 0,U.
When z = 7 = z, we get the KdV equation (U =V = V)
Up = 2Uypge — 120U,

The Novikov-Veselov equation can be represented as the form
of Manakov’s triad

H,=[A,H] - BH,
where H is the two-dimension Schrodinger operator
H=0.0.+U

and ) o .
A=0>-Vo,+0>-Vd,, B=V.+V:.
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Introduction

It is equivalent to the linear representation

Hyp =0, 0= Ay (2)
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Introduction

Motives:

@ Integrable deformation of Schrodinger Operator [Athorne,
Matveev, Nimmo, Y.Ohta]

@ D-bar dressing method [Boiti, Dubrovsky, Leon, Pempinelli,
Tsai]

@ Two dimensional generalization of KdV equation
[S.P.Novikov, A.Veselov, L.V. Bogdanov, P.G. Grinevich]

@ Two-component BKP equation [R. Hirota, |.Krichever,
Takasaki, Si-Qi Liu, C.Z. Wu, Y.J. Zhang]

@ The Tzitzeica equation [E.Ferapontov., A.E. Mironov]

@ Integrable deformation of minimal Lagrangian tori in C' P2
[A.E. Mironov]

@ Integrable deformation of Dirichlet-to-Neumann map
(Electrical Impedance Tomography, [M.Lassas, J. Mueller,
A.Stahel])
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Introduction

Let Hy = Hw = 0. Then via the Moutard transformation[1878]
U(z,2) — U(z,2) =U(z,2)+209In[i /(z/)aw
— w)dz — (POw — woY)dZ),
v — 0= - /(1/)(%1 — wo)dz — (POw — wOY)dZz
w [
one can construct a new Schrodinger operator
H=0.0.+U

and ¢ = ! such that
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Introduction

The extended Moutard transformation was established such
that U(t, z,Z) and V' (¢, z, ) defined by [Matveev, Salle, Athorne,
Nimmo, H.C.Hu, S.Y.Lou and Q.P.Liu, 1991-2003]

Ut,z,2) = U(t, 2, 2) + 200 IniW,

where
W = / (V0w — wd)dz — (V0w — wi)dz (3)
+ [WPw — wdY + wd® — PPPw
+  2(0%0w — OpPw) — 2(0*Ydw — pd*w)  (4)
+ 3V (0w — wdp) — 3V (hdw — wdrp)]dt,
V o= V+200IniW, (5)

will also satisfy the Novikov-Veselov equation.
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Introduction

In particular, we can use U = V = 0 as the seed solution. Then
H = 00. Let us consider the holomorphic functions P(z, ) :
orP o3p
— = 6
ot 0z ©)

Then we have the following
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Introduction

Theorem [Taimanov and Tsarev, 2008]
Let P1(t, 2) and P,(t, 2) be polynomial functions of z and satisfy
(6). One defines wy = P1 + P; and wy = P> + P». Then

U(t,z,2) = 200 IniW,
where
W = PiP—PaPy+ / [(P1P2 — P1P3)dz
(PP, — Py'Pa)dz]

"

/ [Py Py — PyPy + 2PiPy — Py Py) + PPy

_ P_1HI752 + 2(751”752/ — 751/752m)]dt,
V. = 200IniW,

is a solution of Novikov-Veselov equation, which is rational in
z,z,t.
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Introduction

Taimanov and Tsarev considered the polynimial-type solutions
for (6)

N-2

Py(t,z)=2" 4012V P+ 002N P+ on_1z +on.

Then the flow (6) generates the o-flow:
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Introduction

Taimanov and Tsarev considered the polynimial-type solutions
for (6)

N-1 N-2

Pn(t,2) = 2N + 012 + 002 +---+onN_12+ON.

Then the flow (6) generates the o-flow:
6p=(N—K+3)(N—-k+2)(N—k+1)op_3,k=1,2,3---N.

It can be seen that o1, 0, are conserved quantities. Indeed,

01,02, ,on are the elementary symmetric polynomials in the
roots qi, g2, - - - ,qn of P(2):
o1(q) = _Zq“ o) = a4,
i<j
o3(q) = - Z 6i4jq, - on(D) = (=) a1z - g (7)
1<j<k
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Introduction

The integrable (even linear) evolution of & = (01,02, ,0N)
induces a dynamical system on the symmetric product S C' of
the complex roots . We call such a dynamical system on SV (' a
o-system.
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Introduction

The integrable (even linear) evolution of & = (01,02, ,0N)
induces a dynamical system on the symmetric product S C' of
the complex roots . We call such a dynamical system on SV (' a
o-system.

Remark:

From (7), we see that given two solutions Pi(t, z) and P,(t, 2),
by a substitution of ¢"*17P; (¢, ) and ¢ P;(t, 2) , where \; and
A2 are real-valued constants, into (7) we obtain a solution of the
Novikov-Veselov solution. Therefore, to each pair of
holomorphic solutions of (6), we can get an (S x S*)-family of
solutions to the Novikiv-Veselov equation.
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Root Dynamics of o-flows

Let’s write Py(t, z) as

Pn(t,2) = (2 = a(0))(z — @2() - - (2 — an (1))

Then from the equation (6), one gets the root dynamics

N
=6 > : ®)

m<n, j#mmn (Qj - Qm)(Qj - Qn)-

For example, when N=3, we have

. 1
G = —6

' (g1 — @)1 — @3)
. 1
2 = —b

? (2 — ¢1)(q2 — q3)
. 1
g3 = —6

(3 —a1)(53 — q2)
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Root Dynamics of o-flows

For N=4, one has

— 1 1 1
no= 6[((11 - ¢)(q1 — q3) * (1 — a3)(q1 — qa) * (1 — @)(q1 — q4)
. —6[ 1 n 1 N 1
0 (2—a)e—-6) (2-o)e—a) (@—qa)le-—qa)
L 1 1 1
b= e ) T @ a) @) () w)
= 6 1 . 1 N 1
o (4 —@2)(@a —3) (2 —a1)(aa —q2) (g4 — q1)(q1 — @3)
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Root Dynamics of o-flows

For N=4, one has

— 1 1 1
no= 6[((11 - ¢)(q1 — q3) * (1 — a3)(q1 — qa) * (1 — @)(q1 — q4)
. —6[ 1 n 1 N 1
0 (2—a)e—-6) (2-o)e—a) (@—qa)le-—qa)
L 1 1 1
b= e ) T @ a) @) () w)
= 6 1 . 1 N 1
o (4 —@2)(@a —3) (2 —a1)(aa —q2) (g4 — q1)(q1 — @3)

We notice that since o7 and o, are conserved quantities, one

knows that
N N
w, D @
=1 =1

are conserved densities of (8)
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Root Dynamics of o-flows

The goal is to investigate the properties of the root dynamics
(8):

@ Initial Value Problem

@ Lax Pair

@ Asymptotic behavior
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Gould-Hopper Polynomials

The generating function of the Gould-Hopper polynomials
PN(t, 2:) is
)\N

(o ¢]
6)\Z+)\3t = Z PN(iﬁZ)m

N=0
Indeed, the Gould-Hopper polynomials Py (t, z) has the
operator representation [1962]

t286 t389 t4al2

o3 N
Py(t,z) = %N = [1+1t8 + o + 3 + 2 + -],

We remark that in general the Gould-Hopper polynomials are
defined by P](J”)(t, 2) = e!%" 2N, Here we take m = 3.
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Gould-Hopper Polynomials

One notices that the Gould-Hopper polynomials Py(t, z) are
characterized by (6) and Py (0, z) = 2. For example,

Py = 1, Pi=z Pr=22 Py=2z246t, P,=2z*+24tz,
Ps = 2°460t2%, Ps= 2%+ 120t23 + 360t
Py = 2T 4210t2* + 25202, Pg = 2% 4 336¢2° + 10080¢%22
Py = 2°4504t2° + 302401223 + 60480t3
Py = 2% 472027 4+ 75600t%2* + 604800t~

Actually, we have

(N/3] ik N3k

Py(tz) = N> o
k=0
dﬂii(;,Z) = NPy_i(t,2) (9)
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Gould-Hopper Polynomials

From the operation calculus, one has
(z + 3t0*)Pn(t, z) = Pnyi(t, 2).
Hence we yield the recursive relation

PN+1(t, Z) = ZPN(t, Z) + 3f(N — 1)(N — 2)PN_3(t, Z). (10)
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Gould-Hopper Polynomials

From the operation calculus, one has
(z + 3t9?)Pn(t, 2) = Pynya(t, 2).
Hence we yield the recursive relation
Prnii(t,z) = 2Pn(t, 2) + 3t(N — 1)(N — 2)Py_3(t,2).  (10)

We notice that if we consider the equation (6) with the initial
data of analytical function

P(0,2) = z anz,
N=0

then the formal solution is

P(t, z) = el02 Z anz = Z anPn(t, z). (11)
N=0 N=0
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Gould-Hopper Polynomials

Remark:

The successive operations of the operator (z + 3t92) on the
solution (11) can help us construct more solutions of (6). For
example, if P(0, z) = sin z, then we have,

(DY (DY

to3 _ o3 2N+1 _
e%sinz = ¢e'% E z = g —————Pon11(t, 2)
| |
= (2N +1)! = (2N +1)!
= sin(z —t).

The last equation uses the fact e!%¢i* = ¢i=+t, Hence
(z+ 3t8§)N sin(z—t), N=0,1,2,3,4,---

are also solutions of (6).
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Lax Pair of o-flows

@ Initial Value Problem : The root dynamics of o-flow can be
solved by

Hy(t,z) = (z—q(t))(z —q(t)) - (z —an(t))
= PN(t, Z) + Clefl(t, Z) +---+ CNP()(t, Z),

where the constants C1, >, --- ,Cn_1, Cn are determined
by the initial values of ¢1(0), ¢2(0), - - - , gn(0), that is,

C1 = —ZQZ :ZC]i(O)Qj(O)

i<j
C3 = — Z Qz QJ ) )
i<j<k
Cn = (-1)"q1(0)q2(0) - - - qn(0).
It can seen that the solutions ¢1(¢), ¢2(t), - - - , gn(t) can be

obtained algebraically.
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Lax Pair of o-flows

@ Lax pair:
Firstly, we study the root dynamics of the Gould-Hopper
polynomials, which correspond to the initial values

¢1(0) = ¢2(0) = - - - = qn(0) = 0.
Let’s define the N x N matrix by
aii+1 = 1, ifi=1,2,3,---,N;
X()={ aji0=-3t(i—1)(i—2), fi=3,4--- N —1;
0, otherwise.

(12)
Then from the recursive relation (10), one knows that
Py (t, z) = det(zIn — X(t)).
For example, when N = 3,
0 10
X(t) = 0 01
-6t 0 0

Jen-Hsu Chang The Gould-Hopper Polynomials in the Novikov-Veselov equation



Lax Pair of o-flows

N=4,
0 1 00
0 0 10
XO=1 6 0o o1 |
0 —18 0 0
N=5,
O 1 0 00
0O 0 1 00
X(#)=| -6¢ 0 0 10
0 -18 0 0 1
0 0 36t 0 0
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Lax Pair of o-flows

We can write X (t) as

where Q = diag(q1(t), ¢2(t),--- ,qn(t) and

Po(q1,t)  Po(qe.t) Po(gz,t) --- FPolgn,t)
Pi(q1,t) Pi(qe,t) Pi(gs.t) -+ Pi(gn,t)
R(t) = Pr(q1,t)  Po(qo,t) Po(gz,t) - Pa(qn,t)
PN(;]L t) Pn(q2,t) Pn(g3.t) --- Pwn(an,t)

Jen-Hsu Chang
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Lax Pair of o-flows

For instance, when N = 3,

1 1 1
Rty= a1 @ a3 |;
G @ a
N=4,
1 1 1 1
1 2 3 4
(ORI I I N A
G +6t g3+6t ¢3+6t g;+6¢
N=5,
1 1 1 1 1
q1 q2 q3 q4 as
R(t) = @ a3 a3 @ 3

G+6t @3+6t ¢3+6t q+6t g +6t
gy + 24t g + 24t qF +24t qf + 24t qF + 24t
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Lax Pair of o-flows

From the initial value problem, we notice that the polynomials "
can be replaced by the elementary symmetric polynomials of

the roots ¢1, ¢2,- -+, qn. Hence one has R(q) . It can be seen
that _

X(t)= RLR™,
where

L=Q+[M,Q], M=R'R
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Lax Pair of o-flows

For example, when N=3,

’ - 42—q3 - 43—q2
;‘71 q 7 q3—q1 e 32_31
_ 1 3 : . 43—dq1 .
Lt)=| & ga 2 32 g Bg=g '
1—42 . 42—q1 y
Uo—gs g5 a3
N=4,
. _ d2(a2—a3)(a2 —4)+6 _ 43(a3—a2)(a3—a4)+6 _ d4(a4—a2)(94—a3)+6
a (a1—a3)(a1—aa) (a1—a2)(a1—a4) (a1—a2)(a1—q3)
_ d1(a1—a3)(a1 —a4)+6 . _a3(a3— <11)(<13 <14>+6 _ da(ag—a1)(94—q3)+6
L(t) = (a2 —a3)(a2—aq) . a2 (a2—a4)(a2—a1) (@2—a3)(a2—a1)
_ d1(a1—a2)(a1 —a4)+6 _ d2(a2—a4)(92—4q1)+6 _ dalag—a1)(ag—a2)+6
(‘12*43)(‘14*‘13) (94 —q3)(q1—a3) . a3 (a2 —q3)(q1—q3)
_ d1(91—a2)(91 —q3)+6 _ d2(ap—a3)(ap—a1)+6 _43(a3—a1)(93—a2)+6 p
(04 a3)(a4—a2) (a4 —a3)(ag—a1) (a4—a1)(24—a2) 4 /

ials in the Novikov-Veselov equation



Lax Pair of o-flows

Since
dX(t) B ai7i_2:—3(i—1)(i—2), ifi:3,4~- ;N —1;
dt | 0, otherwise,

we know & (t) is a nilpotent matrix and hence L is a nilpotent
one, too. So

(LT)_t[ ()]”_0 r=1,23,...,..
Actually, a simple calculatlon yields
5l —o N >3
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Lax Pair of o-flows

Since
dX(t) B ai7i_2:—3(i—1)(i—2), ifi:3,4~- ;N —1;
dt | 0, otherwise,

we know & (t) is a nilpotent matrix and hence L is a nilpotent
one, too. So

(LT)_t[ ()]”_0 r=1,23,...,..
Actually, a simple calculatlon yields
5l —o N >3

Now,
d?>X (t)
dt?
will imply the Lax equation

=0
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Lax Pair of o-flows

For N = 3,4,5, we see that, by Maple software, ¢; satisfies the
following Goldfish model [Calogero, 2001], a limiting case of the
Ruijesenaars-Schneider system:

- 4id;
=2 ¢ —q;
J#i J

The reason is that the Gould-Hopper polynomials
Py, N =3,4,5 are linear in t-variable.
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Lax Pair of o-flows

For N = 3,4,5, we see that, by Maple software, ¢; satisfies the
following Goldfish model [Calogero, 2001], a limiting case of the
Ruijesenaars-Schneider system:

. qiq;
G=23 G —q
J#i J

The reason is that the Gould-Hopper polynomials
Py, N = 3,4,5 are linear in ¢t-variable. For N = 6, we have from
the diagonal terms of the Lax equation (14)

=23 Gig;  Yoo—; (some quadratic terms of )g; + 720
i — T15.(a — a5)
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Lax Pair of o-flows

Remark:
For the Goldfish Model

gi =2 Z 7'%%

e B

its initial value problem can be solved by the statement:

Jen-Hsu Chang The Gould-Hopper Polynomials in the Novikov-Veselov equation



Lax Pair of o-flows

Remark:
For the Goldfish Model

i = 22 4iq;

i qi — qj

its initial value problem can be solved by the statement:
z=¢(t),i=1,2,---, N are the N roots of the equation

N .
4i(0) _}
;z—qi(O) ot

It can be seen that it is a polynomial in z with coefficients linear
in t. Then the special choices of initial datum can get the
solutions of the root dynamics (8) for the cases N = 3,4,5.
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Lax Pair of o-flows

Secondly, we consider the general case. Let’s define the 2D
Appell polynomials G, (z,t) by means of the generating function
[G.Bretti and P.Ricci, 2004]:

)er= TN ZGn(z t (15)

where

I', s being constants and I'y = 1. Then one has the following
formula, noting that () = (),

N
6x =3 (o) Txcnile) (16)
=0

It's easy to see that the polynomials G,,(z,t) also satisfy the
linear equation (6).
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Lax Pair of o-flows

Then we have
Ty h="TF~ (17)
(non)

The Gould-Hopper Polynomials in the Novikov-Veselov equation



Lax Pair of o-flows

Then we have

Tn_p = C]]VV—’L. (17)
(n2n)
Now, it’s suitable to introduce the coefficients of the Taylor

expansion

A XN

A HZ:% o
It can be seen that the coefficients «,, can be expressed by
'y, Ty, -+, Ty (or the initial values (17)). For examples,

ag = Ty, a1 =T,-T%, ap=T3-3IT,+2I3,
a3 = T4+ 12137, — 4T T3 — 315 — 617,
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Lax Pair of o-flows

The recurrence relation for the 2D Appell polynomial Gy(z,t)
can be written as follows:

Go(z,t) =1
Gn(zt) = (2+0a0)Gy_1(zt) + 3N — 1)(N — 2)Gy_3(2,1)
N-2 N—1

+ kzzo < k )ozN_k_le(z,t). (18)
A simple calculation can yield
Go(z,t) = 1, Gi(z,t) =2+, Ga(z,t)=(2+ )’ +a1
Gs(2,t) = (2+a)®+301(z + ap) + az + 6t
Ga(z,t) = (24 ag)* + 601(z + ag)?® + (4az + 24t)(z + ag) + a3

+ 3ai.

When A()) = 1, this recursive relation becomes (10). Hence
the relation (18) is a generalization of (10) for arbitrary initial
data.
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Lax Pair of o-flows

The matrix corresponding to (12) can be constructed as follows:

amH:l, |fz:]_’2’3”N_]_,
a;; = —Qg, |fz:]_727377N,
Q-1 = _(z:;)ah ifi = 273747 e 7N ;
aii—o=—(""3)(6t +a2), ifi=3,4,5 - N;
1 o :
X(t) = Qii-3 = _(274)0537 ifi = 475767 e aN ’
ik = —(; 31 ) s ifi=k+1,k+2,k+3,---,N;
an1 = —OaN-_1

Similarly, one has

Gn(z,t) = det(zIn — X (t)).
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Lax Pair of o-flows

For instance, when N = 5, we get

—ap 1 0 0 0
—aq —ap 1 0 0
X(t) = —(6t + 062) —201 —Q 1 0
—Qs3 —(18t + 3042) —3a1 —Qp 1
—ay —4as —(36t + 6cp) —4a1 —a

Also, one can write X (¢) as
X(t) = R(QR™(t),

where @ = diag(qi(t), g2(t), - ,qn(t) and R(t) is defined as
(13) with P,,(¢;,t) being replaced by G,,,(¢;,t). Then one
follows the previous procedures and finally can get the Lax
equation (14) for general case. Therefore the root dynamics (8)
is Lax-integrable.

We notice here that for N = 3, 4,5 the root dynamics of Gy
also satisfies the Gold-fish model .
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Lax Pair of o-flows

@ Asymptotic behavior

It is known that the Gould-Hopper polynomial Py(t.z) has the
scaling property:

z
t1/3)

Px(t,z) = t3 Py( (19)

where Py (n) is the so-called generalized Hermite polynomial
(or Appell polynomial) in = 5. For example,
Ps(t,z) = 28+ 336L25 + 100802 = ¢3[n® + 3361° + 1008017
8 A
= tgpg(n).

Then the k-th zero AS\I;) (constant)of Py(n) determines the
dynamics of the root ¢, i.e.,

ar(t) = A3,
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Lax Pair of o-flows

Since Py (¢A) = 0,¢3 = 1, one knows that the roots g, are
located on the circles in the plane with time dependent radius
or fixed at the origin.
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Lax Pair of o-flows

Since Py (¢A) = 0,¢3 = 1, one knows that the roots g, are
located on the circles in the plane with time dependent radius
or fixed at the origin. Finally, from the Initial value Problem, we
know that when ¢t — oo and z — oo such that |z|3/¢t — constant,
Pn(t, z) plays the dominant role. Hence one yields

ai(t) — AD/3,

Consequently, the roots asymptotically will follow diagonal lines.
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Smooth Rational Solutions of NV Equatio

In this section, we establish smooth rational solutions for all
time by the extended Moutard transformation (7) and Gould
-Hopper polynomials.
Example 1
Let P; = 22 + 2+ 1 and P> = —iz2 — 2iz. Then a simple
calculation can yield the imaginary part of W in (7)

M(z,y,t) = (22 +y°)* + gx3 + 4xy? + 422 + da + 4t + 100.
We can see that

M(z,y,0) ~ 4z + 100 near (0,0)
and
M(z,y,0) ~ (22 +4%)? near r=+/22+y? = .

It can be verified that M (x,y, 0) is positive for all R?. Also,
M (z,y,t) is positive for all R? at any fixed time t . Then the
solution U of the Novikov-Veselov equation (1) is
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Smooth Rational Solutions of NV Equatio

M; = —12(294+ 60022 + 588y* + 82> + 8882 + 12¢ + 32*
6 2%y? — 2a3y% + 24 2t — 3ytx + 2497t + 36 2t — 3y* + 2°)

and

M, = (33:4 +62%y? +3y* + 823 + 122y + 1222
+ 12z +12¢+ 300)°
At fixed time t , one knows U decays like }3 for r — oco. Also, U

tends asymptotically to zero at the rate % at any fixed point
(z,y) when t — oo.
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Example 2
Let P; = (2% + 6t) + 2iz and P, = —i(z> + 6t) + 2. Then a
simple calculation can yield the imaginary part of W in (7)

fla,y,t) = (2% + %) + 42y + 8ay® + 2(a® + )
+ 6t(22° — 6xy® — y) + 36t + 6000.
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Smooth Rational Solutions of NV Equatio

Example 2
Let P; = (2% + 6t) + 2iz and P, = —i(z> + 6t) + 2. Then a
simple calculation can yield the imaginary part of W in (7)

fla,y,t) = (2% + %) + 42y + 8ay® + 2(a® + )
+ 6t(22° — 6xy® — y) + 36t + 6000.

Then we can see that
f(x,y,0) = 2(x® + y*) + 6000 near (0,0)
and
f(z,y,0)~ (@ +¢7)° near r=/22+y? =occ.

It can be verified that f(x,v,0) is positive for all R? .
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Also, letting f(x,y,t) be equal to zero, one has

t = (1/2)zy® + (1/12)y — (1/6)2
4+ (1/12)\/2422y* — 2023 — 3624y — 7y? — 2023y — 45
—8x2 — 23996.

A simple calculation shows that the equation inside the square
root is negative for all R2. Hence f(x,y,t) is positive for all R?
at any fixed time t. Then a solution U of the Novikov-Veselov
equation (1) is

where
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Smooth Rational Solutions of NV Equatio

o= —7[24x y +162° + 24 2°y> + (432ty + 216000 + 48 y°) z*
+ (—24y — 144t + 48y) 2> + (432000 % + 864 ty> — 96 y*) 2
+ (—24y" — 489> + 432ty> + (432000 + 17281?) y)  + 48000
4+ 4329°t — 329° + 216000 4* + 2522

and

B o= (2°+32% +32%y + 90 + 427y + 8y + 227 +2¢°

+ 12t23 — 36txy? — 6ty + 3612 + 6000)°

At fixed time t , one knows U decays like ,%1 for r — co. Also, U

tends asymptotically to zero at the rate %2 at any fixed point
(z,y) when t — oc.
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Example 3
Let Py = (2° +60t2%) + 2iz and P, = —i(2° + 60t2%) + 2. Then
the imaginary part of Win (7) is

h(z,y,1)
= <(ﬂ:2+y2)5—:§)x5y+2;x3y3
+ (22 +9%) (2+ 1223y — 1223°)
+ 120t (.CC2 + y2) (.5[75 _ 33/4:1: _ 2x3y2) 43600 t2 (1112 + y2)2
+ 20t (11y° +32%y) 4 120> 4 1000) .

Similarly, h(z,y,t) is positive for all R? at fixed time t. Then the
solution U is

where
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Hy(z,y,t)
B 1 13 3 1 10 2 5\ 9
= —5[360% + (36027 +14400t) y'' — 144 y'° + (14400 2°t — 1800 2° ) y
+ (7720 % + 900000 + 108000 tz) s (237600 tz* — 777600 2z — 3600 z7) '
+ (3840 ot (3600000 + 432000 t2) 22 + 83520 tm) oo+ (165600 tz® + 720
— 10368000 > — 1800 = — 345600 t213) v+ (—1120 2% + (5400000
+ 648000 t2) 2% + 12000 t2> + (—129600000 ¢ — 15552000 t3) « — 810000 r?) o
+ (360 2™ — 50400 2%t + 950400 2°+2 — 2160 2> + 20736000 ¢ 2% + (7216000 2
—  1800000) x — 5760 ¢) 5> + (2380 L (3600000 + 432000 t2) 2% — 25200 t2®
+ (—10368000 3 — 86400000 t) 2% + 453600 2t2 + 62208000 £* + 518400000 t2) 2
+ (360 o' 4 21600 21°¢ + 518400 2 + 720 2° + 31104000 +>z* + (1920000
+ 230400 t2) 23 + 17280 ¢ + 1555200 > + 12960000 t) y + 476 20
+ (900000 + 108000 tz) 2% + 2520027t + (43200000 t + 5184000 t3) o

+ 226800 %t> + (62208000 ¢* + 518400000 ¢°) & + 72000 + 8640 ¢° )]

and
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Smooth Rational Solutions of NV Equatio

Hy(z,y,t)
= (3 210 4+ 15 28y% + 30 2%* + 30452* + 159822
3910 4+ 26 25y + 20 233
622 +6y° — 36 xy° + 360 2"t — 1800 t2>y* — 360 t>y> — 1080 tay®
10800 z*#? 4 21600 t?2%y? + 10800 t2y* + 660 ty> + 180 ta2y
360> + 3000)°

+ + + +

In this case, at fixed time, U decays like }6 forr — oo ;
moreover, we see that
—240(2? + 32 —240z2%
~ B0(a2 jE y2;i)1]2 @m0t (@0
at fixed point (z, y), which is a stationary solution of (1) for
~3600z%22 — 12022
(302222 +1)°
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We notice that if we define

UZZ
> :l 7)) = 2
w(z,2) =InU and V(z2Z) 3
then the stationary equation of the Novikov-Veselov equation
(1) will become the Tzitzeica equation[B.C. Konopelchenko and
U. Pinkall., 1998]
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We notice that if we define

UZZ
> :l 7)) = 2
w(z,2) =InU and V(z2Z) 3
then the stationary equation of the Novikov-Veselov equation
(1) will become the Tzitzeica equation[B.C. Konopelchenko and
U. Pinkall., 1998]

Uyz; = e + 66_2", (21)

where ¢ is an arbitrary constant. It can be verified that (20)
satisfies the ¢ = 0 case, i.e., the Liouville equation, whose real
solutions are given by

In dz (22)

(14 K|S]2)*

where S(z) is a locally univalent meromorphic function in some
domain and « is a constant. For the solution corresponding to
(20), one knows that S(z) = 22 and s = 30.
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Smooth Rational Solutions of NV Equatio

For general case, let’'s choose
P1 = Pn(t,z)+2iz and Pr = —iPy(t,2)+ 2.

We can expect the imaginary part of W in (7) is positive for all

R? at any fixed time if we choose an appropriate constant. And
the solution U(z, y, t) at any fixed time decays like ﬂ% for N >
2. When t — oo and then one obtains the solutions (22) of the

Liouville equation or the ones of the Tzitzeica equation (21).
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For general case, let’'s choose
P1 = Pn(t,z)+2iz and Pr = —iPy(t,2)+ 2.

We can expect the imaginary part of W in (7) is positive for all
R? at any fixed time if we choose an appropriate constant. And
the solution U(z, y, t) at any fixed time decays like r\% for N >
2. When t — oo and then one obtains the solutions (22) of the
Liouville equation or the ones of the Tzitzeica equation (21).
Remark: For each potential U(x, y, t) there exist infinitely many
wave functions, which can be constructed by the Pfaffian of
linear combinations of the Gould-Hopper polynomials
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Smooth Rational Solutions of NV Equatio

In summary, one investigates
@ The Gould-Hopper polynomials
@ The o-flow and the Lax pair
@ The Gold-Fish model
@ The smooth rational solutions of NV equation

@ The solution of the Liouville equation (or the Tzitzeica
equation)

Jen-Hsu Chang The Gould-Hopper Polynomials in the Novikov-Veselov equation



Smooth Rational Solutions of NV Equatio

In summary, one investigates
@ The Gould-Hopper polynomials
@ The o-flow and the Lax pair
@ The Gold-Fish model
@ The smooth rational solutions of NV equation

@ The solution of the Liouville equation (or the Tzitzeica
equation)

Thanks for your attention.
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