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Introduction

* The Riemann method is widely used for solution of Cauchy problem for
hyperbolic linear equation for one function of two independent variables. The
real reason for the introduction of adjoint equation to obtain Riemann function
is to make available the line integral vanishes around closed paths [6]. In
other words there is a conservation law of the special form.
* The same method is applied for linear system obtained from quasi-linear
one by hodograph transformation. This linearization is valid only when the
Jacobian of transformation is not equal to zero, that is unknown before the
solution of the system.
* Conservation laws of quasi-linear homogeneous hyperbolic system for two
functions of two independent variables, related with the solution of
corresponding linearized system are used in the present talk for the solution
of the Cauchy problem. The vanishing of Jacobian is not a restriction now,
that allows to construct the characteristic fields including the simple waves.
* Some applications for plane plasticity and gas dynamics are considered. In
particular the Mikhlin problem for the loaded cavity is solved for any convex
form of contour.
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Hyperbolic quasi-linear system

Let us consider a quasilinear system of homogeneous PDEs of two
independent variables x , y and two dependent ones u, v in the form [10]:

A
∂U
∂x

+ B
∂U
∂y

= 0, (1)

where A = ‖aij(u, v)‖, B = ‖bij(u, v)‖, i, j = 1, 2, U = (u, v)T .
If matrix A is not degenerate, then system (1) can be written in the normal
form

∂U
∂x

+ M
∂U
∂y

= 0, (2)

were M = ‖mij(u, v)‖.

Let system (2) be a strictly hyperbolic one. It means that matrix M has two
real different eigenvalues λ1 and λ2, obtained as a roots of the equation:

det(M − λE) = 0 : 2λ1,2 = m11 + m22 ±
√

(m11 − m22)2 + 4m12m21,

that gives two eigenvectors l1 =
(

l11 , l
2
1

)

and l2 =
(

l12 , l
2
2

)

respectively.
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Let us consider the differential forms

ωk = l1k (u, v)du + l2k (u, v)dv = 0, k = 1, 2,

which can be integrated, because in this case there exist an integrating
factors always. Then, the corresponding two integrals Φk (u, v) = const can
be taking as a Riemann invariants rk = Φk (u, v) and the system (2) takes the
diagonal form:

∂R
∂x

+ Λ
∂R
∂y

= 0, Λ = diag(λ1, λ2), R = (r1, r2)
T . (3)

System (3) has two families of real characteristic curves determined by the
following equations:

dy
dx

= λ1(u, v),
dy
dx

= λ2(u, v), λ1 6= λ2, (4)

that is the variable r1 is the invariant along the first characteristic curve and r2

is the invariant along the second one.
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It is well known, that system (2) can be linearized by a so-called hodograph
transformation of the form x = x(u, v), y = y(u, v). This ’speedgraph’
transformation [7] is just an interchange of roles of the unknown functions and
the independent variables. Thus, the system (1) takes the linear form:

det(A)(AT )−1∇Uy(u, v) = det(B)(BT )−1∇Ux(u, v), ∇U = (∂/∂u, ∂/∂v)T ,

and for the diagonal form (3) one can obtain

Λ∇Ry(r1, r2) = det(Λ)∇Rx(r1, r2), ∇R = (∂/∂r1, ∂/∂r2)
T
. (5)
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The system of such a form are widely used in the mechanics of a continuum
media [10], for example in the gas dynamics for describing isoentropic
plane-symmetry flows; in the theory of plane plasticity for the stresses of a
deformed region under the different yield criterion [4], for the motion of
granular materials, for the propagation of the plane wave of loading in
homogeneous semi-infinite elastic-plastic beam [8], etc.

Let us note, that it is possible to obtain the solution of system (3) from the
solution of (5) and vice versa only when two corresponding Jacobians
J1 = ∂(r1, r2)/∂(x , y) and J2 = ∂(x , y)/∂(r1, r2) are not equal to zero:

J1 =
∂r1

∂y
∂r2

∂x
− ∂r2

∂y
∂r1

∂x
= J−1

2 . (6)
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System (2) can be extended for three or more functions and in this case is
called one-dimensional system of hydrodynamic type [15]. A natural
hamiltonian formalism was proposed for this class of homogeneous systems
of PDE and the generalized hodograph method generates from every its
solution a symmetry (commuting flow) that finally leads to solution of (2).

Let us set up the Cauchy problem for the system (2) due to [10]: in some
neighborhood of the arc C: a 6 τ 6 b of an initial curve
L = {(x , y) : x = x(τ), y = y(τ)} it is necessary to determine the solution of
(2) satisfying on L the initial condition

U(x(τ), y(τ)) = U0(τ), τ ∈ [a, b]. (7)
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Conservation Laws

Let us seek the conservation law of system (3) directly in the form

∂

∂x
ϕ(u, v) +

∂

∂y
ψ(u, v) = 0, (8)

which is valid for any solution of (3). Let us multiply (3) by a vector
α = (α1, α2) [10], then, eliminating α, we obtain the linear system for the
functions ϕ and ψ:

Λ∇Rϕ(r1, r2) = ∇Rψ(r1, r2). (9)

Now let us describe how to solve Cauchy problem using conservation laws.
Let P(x(a), y(a)), Q(x(b), y(b)) be two end-points of the arc C, M(Mx ,My )
be a point of intersection of two characteristic lines: r1 = r0

1 , going from the
point Q and r2 = r0

2 , going from the point P.
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Taking integral over the closed path PQM, which due to Green theorem is
equal to zero, we have:

∮

PQM

ψdx − ϕdy = 0 =

∫

PQ

+

∫

r1=r0
1

(ψ − ϕλ1)dx +

∫

r2=r0
2

(ψ − ϕλ2)dx . (10)

Integrating by parts the above two integrals and taking (without loss of
generality) the following conditions:

(ψ − λ1ϕ)|r1=r0
1
= 1, (ψ − λ2ϕ)|r2=r0

2
= 0, (11)

we get the coordinate Mx

Mx = x(b)−
∫

PQ

(

ψ
dx
dτ

− ϕ
dy
dτ

)

dτ. (12)
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Analogically, for the y -coordinate of the point M we obtain:

My = y(b) −
∫

PQ

(

ψ
dx
dτ

− ϕ
dy
dτ

)

dτ, (13)

but now the conditions for the functions ϕ, ψ are the following ones:

(ψ/λ1 − ϕ)|r1=r0
1
= 1, (ψ/λ2 − ϕ)|r2=r0

2
= 0. (14)

In such a way, the coordinates of the point M are known and one can
reconstruct the values of functions u, v from the initial condition (7) .

In other words the Cauchy problem for quasi-linear system (2) with (7) is
reduced to two Cauchy problems for the linear one (9) with conditions (11)
and (14). To determine the functions ϕ and ψ for these problems one can use
the same Riemann method.

Note, that the above procedure can be used to solve Goursat problem, when
the initial data are prescribed on two intersecting characteristics (see [12]).
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Comparing equations (9) with system (5) one can obtain the linearization of
(2) without any mention of the vanishing of Jacobian J1 and calculate the
conservation laws directly in two cases:

1 if det(Λ) = K = const, then ϕ = y(r1, r2), ψ = Kx(r1, r2);

2 if λ1 = −λ2, then ϕ = x(r1, r2), ψ = −y(r1, r2).

An example of the first case is the system of the ideal plane plasticity [4]:

M =

(

− cot 2v −2k/ sin 2v
−1/(2k sin 2v) − cot 2v

)

, (15)

with det(Λ) = −1.
One of the example of the system (2) for the second case mentioned above,
is the system

m11 = m22 = 0, m12 = −1, m21 = F 2(u), (16)

related with the well known equation

∂2Y
∂x2 = F 2

(

∂Y
∂y

)

∂2Y
∂y2 ,

investigated in Ref. [17] in the context with Fermi, Pasta and Ulam (1955)
results on the vibration of a nonlinear, loaded (or beaded) finite string. In the
case (16) we have λ1 = −λ2 = −F .
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Another possibility to find simple relation between conservation laws and
solution of linearized system is to use well-known lemma about Laplace
invariants (h, k) for two equivalent hyperbolic equations [9], namely:

"two hyperbolic equations of the form

∂2V (r1, r2)

∂r1∂r2
+C1(r1, r2)

∂V (r1, r2)

∂r1
+C2(r1, r2)

∂V (r1, r2)

∂r2
+C3(r1, r2)V (r1, r2) = 0

are equivalent up two the factor-function of r1, r2 iff its corresponding Laplace
invariants:

h =
∂C1

∂r1
+ C1C2 − C3, k =

∂C2

∂r2
+ C1C2 − C3 (17)

are equal".
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Expressing (5) and (9) in terms of the hyperbolic equations of the second
order:

∂2x
∂r1∂r2

− 1
λ1 − λ2

∂λ2

∂r2

∂x
∂r1

+
1

λ1 − λ2

∂λ1

∂r1

∂x
∂r2

= 0, (18)

∂2ϕ

∂r1∂r2
+

1
λ1 − λ2

∂λ1

∂r2

∂ϕ

∂r1
− 1
λ1 − λ2

∂λ2

∂r1

∂ϕ

∂r2
= 0 (19)

and comparing its Laplace invariants:

hx = − 1
λ1 − λ2

∂2λ2

∂r1∂r2
− 1

(λ1 − λ2)2

∂λ2

∂r1

∂λ2

∂r2
= kϕ,

kx =
1

λ1 − λ2

∂2λ1

∂r1∂r2
− 1

(λ1 − λ2)2

∂λ1

∂r1

∂λ1

∂r2
= hϕ

one can obtain the relation between eigenfunctions:

(λ1 − λ2)
∂2

∂r1∂r2
(λ1 + λ2) =

∂λ1

∂r1

∂λ1

∂r2
− ∂λ2

∂r1

∂λ2

∂r2
(20)

when there exist the function w(r1, r2), giving the simple relation between
solution of (18) and (19): ϕ = wx .
In such a way we obtain the solution of Cauchy problem for the original
system (2), (7) without any restrictions on the Jacobian of hodograph
transformation.
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Examples of application

1. Plane ideal plasticity with Saint-Venant–Mises yield cr iterion
This system was investigated, using the group of admitted symmetries: for its
invariant solutions see [1] and for the reproduction of solutions see
[13, 14, 16]. Moreover, all its conservation laws and highest symmetries were
described in [11]. Being semi-inverse method, group analysis provides
analytical solutions and then one can determine the boundary conditions for
obtained solutions. But if the the boundary conditions are given from the
beginning, then the method of conservation laws can be applied to solve
boundary problem directly.
The system has the form:

∂σ

∂x
− 2k

(

∂θ

∂x
cos 2θ +

∂θ

∂y
sin 2θ

)

= 0,

∂σ

∂y
− 2k

(

∂θ

∂x
sin 2θ − ∂θ

∂y
cos 2θ

)

= 0, (21)

where σ is a hydrostatic pressure, θ is an angle between the first main
direction of a stress tensor and the ox -axis, k is a constant of plasticity.
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The functions for this system in the form (3) are the following:

u = σ, v = θ;λ1 = tan v , λ2 = − cot v ; r1 =
u
2k

− v , r2 =
u
2k

+ v . (22)

Solution of problem (9), (11) has a form [12]

ϕ = 2
∂ρ

∂r1
cos v − ρ sin v , ψ = 2

∂ρ

∂r1
sin v + ρ cos v , (23)

where function ρ(r1, r2) looks like this

ρ(r1, r2) = R
(

r1, r0
1 , r2, r0

2

)

cos
(

r0
2 − r0

1

2

)

−1
2

r2
∫

r0
2

R
(

r1, r0
1 , r2, τ

)

sin
(

τ − r0
1

2

)

dτ.

Accordingly, the solution of the problem (9), (14) is

ρ(r1, r2) = R
(

r1, r0
1 , r2, r0

2

)

sin
(

r0
2 − r0

1

2

)

+
1
2

r2
∫

r0
2

R
(

r1, r0
1 , r2, τ

)

cos
(

τ − r0
1

2

)

dτ,

R
(

r1, r0
1 , r2, r0

2

)

= I0

(

√

(r1 − r0
1 )(r2 − r20)

)

is the Bessel function of a zero

order of imaginary argument, I0(0) = 1, I0
′(0) = 0.

In this case det(Λ) = −1, so ϕ = y(r1, r2), ψ = −x(r1, r2).
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2. Nonlinear hyperbolic heat equation
As indicated in [2], the hyperbolic heat equation

∂

∂t

(

∂U
∂t

+
U
τ0

)

− ∂

∂X

(

χ2
0

U2

∂U
∂X

)

= 0, (24)

where χ0 and τ0 are positive constants can be expressed in the form of the
following quasilinear system

∂u
∂x

− ∂v
∂y

= 0,
∂v
∂x

− χ2
0

u2

∂u
∂y

= 0 (25)

by introducing the potential function u(x , y) and setting

v = τ0et/τ0U, y = X , x = et/τ0 .

In this case
r1,2 = ue∓v2/χ0 , λ1 = −λ2 =

χ0√
r1r2

,

so ϕ = x(r1, r2), ψ = −y(r1, r2).
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3. Gas dynamics
The one-dimensional isentropic flow of polytropic gas in Euler coordinates in
case of plane symmetries as it well known [10] is described by the following
hyperbolic system:

∂s
∂t

+ (αs + βr)
∂s
∂x

= 0,
∂r
∂t

+ (αr + βs)
∂r
∂x

= 0, (26)

where s = r1, r = r2 are the Riemann invariants, so

λ1 = αr1 + βr2, λ2 = αr2 + βr1,

α = 1/2 + (γ − 1)/4, β = 1/2 − (γ − 1)/4, γ = const 6= 1 is a parameter of
polytrope.

In this case, equation (20) is satisfied, because hx = hϕ = −αβ, so there is a
relation between the conservation laws and solution of linearized system of
the form ϕ = w(r1, r2)x(r1, r2).
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Explicitly, the solution of the problem (9), (11) has the form:

ϕ =
λ1ρ1 − λ2ρ2

λ1 − λ2
, ψ =

ρ1 − ρ2

λ1 − λ2
, (27)

where

ρ1 = ρ2 −
r2 − r1

K
∂ρ2

∂s
, K =

γ + 1
2(1 − γ)

,

ρ2(r1, r2) = (r0
2 − r1)

−K (r2 − r0
1 )

−(K+1)(r0
2 − r0

1 )
2K+1 F (r0

1 , r
0
2 ; r1, r2) +

+(K + 1)(r2 − r0
1 )

−(K+1)

r2
∫

r0
2

(t − r1)
−K (t − r0

1 )
2K F (r0

1 , t ; r1, r2)dt , (28)

and F (r0
1 , r

0
2 ; r1, r2) = 2F1

(

K ,K + 1; 1; (r0
1 −r1)(r2−r0

2 )

(r2−r0
1 )(r

0
2 −r1)

)

is a hypergeometric

function.
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Analogically, for the problem (9), (14) the function ρ2 has a little modification:

ρ2(r1, r2) = (βr0
2 + αr0

1 )(r
0
2 − r1)

−K (r2 − r0
1 )

−(K+1)(r0
2 − r0

1 )
2K+1 F (r0

1 , r
0
2 ; r1, r2) +

+(r2 − r0
1 )

−(K+1)

r2
∫

r0
2

(t − r1)
−K (t − r0

1 )
2K+1F (r0

1 , t ; r1, r2)

(

β +
K + 1
t − r0

1

(βt+

+αr0
1 )
)

dt .
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4. Loaded homogeneous semi-infinite elastic-plastic beam
The process of propagation of plastic deformations in semi-infinite
elastic-plastic beam, dynamically loaded on the one end in Lagrange
coordinates is described by the following system [8]:

ρ
∂v
∂t

=
∂σ

∂x
,
∂v
∂x

=
1

ρa2(σ)

∂σ

∂t
, (29)

where ρ = const is a density, v(t , x) is a velocity of medium particles, a
tension σ = σ(ε) is monotonically increasing function of the deformation
ε(x , t). Introducing the function u(x , t), such that v = ∂u

∂t , ε = ∂u
∂x we come to

nonlinear wave equation:

∂2u
∂t2 − a2(ε)

∂2u
∂x2 = 0,

so a(ε) is a speed of the longitudinal wave propagation in the beam.
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Eigenfunctions have the form λ1,2 = ∓a(σ) and Riemann invariants are the
following ones:

r1,2 = v ±
σ
∫

0

dσ1

a(σ1)
. (30)

This is the case when λ1 = −λ2, then ϕ = t(r1, r2), ψ = −x(r1, r2).
In the particular case if a =

√
σ, then

λ1,2 = ∓
√
σ; r1,2 = v ± 2

√
σ

and system (9) can be reduced to Euler-Poisson-Darboux equation in the
form

∂2ϕ

∂r1∂r2
+

2
r1 − r2

(

− ∂ϕ

∂r1
+
∂ϕ

∂r2

)

= 0 (31)

with the well known Riemann function.

S.I. Senashov, A.Yakhno (SibSAU, UdeG) Conservation laws, hodograph transformation... GMMP2011 22 / 28



Mikhlin problem

In the work [5] the Mikhlin problem for the cavity in an infinite medium loaded
by a constant shear stress in addition to a uniform pressure is solved under
the condition J1 6= 0. The using of conservation laws permits forget about this
condition.
Let us consider one example, namely let the contour be given by the
2π-periodic curve:































x = −r cot t , y = −r , t ∈ [γ − π,−γ),
x = −r cot t , y = r , t ∈ (γ, π − γ),

x = r cos
πt
2γ
, y = r sin

πt
2γ
, t ∈ [−γ, γ],

x = r cos
πt

2(π − γ)
− a, y = r sin

πt
2(π − γ)

, t ∈ (γ − π, π − γ],

where a is the distance form (0, 0) to the center of curve parts with radio r ,
γ = arctan(r/a). This contour is loaded by the normal and tangent stresses:

σn = −p, τn = 0,

where n is the normal to the contour.
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Let us define as N(t) = arctan
y ′

t

x ′
t

the angle between the tangent to the

contour and x -axes. Putting p = k = 1/2, then the initial conditions take the
form

σ|L = −1, θ|L =



















N(t) − π/4 + π/2, t ∈ (0, π),

N(t) − π/4 + 3π/2, t ∈ (π, 2π),
−π/4, t = 0,

3π/4, t = π.

The solution of this problem is given on the Figure (for a = 4, r = 3), where
the first family of the characteristic curves is constructed, using conservation
laws described in subsection 1.

Let us note, that the stress field near the stright-line border of the cavity can
not be constructed as a solution of linearized system because in this domain
we have J1 = 0.
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Figure: Characteristics field for the cavity
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Conclusions and discussion

The relation between conservation laws of quasi-linear system and the
solution of corresponding linearized system, obtained by the hodograph
transformation, permits to solve the boundary value problems in the domain,
where Jacobian of transformation is equal to zero.

Recently, in Ref. [2] some non-homogeneous quasilinear systems, arising in
various areas of physical interest, were reduced to the homogeneous ones by
using the invariance to suitable Lie groups of point transformations. As we
hope, it opens the way to apply the proposed method for some
non-homogeneous systems.
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