# Whitham Theory for Perturbed Integrable Equations and its Applications

Anatoly Kamchatnov

Institute of Spectroscopy, Russia

International Conference "Geometrical Methods in Mathematical Physics" Moscow, December 17, 2011

# Collaborators

- Gennady El, Loughborough University, UK
- Arnaldo Gammal, São Paulo University, Brazil
- Yury Gladush, Institute of Spectroscopy, Russia
- Roger Grimshaw, Loughborough University, UK
- Yaroslav Kartashov, Institute of Spectroscopy, Russia
- Svyatoslav Korneev, Institute of Spectroscopy, Russia
- Nicolas Pavloff, Université Paris-Sud, France



Shock wave

Undular bore

KdV dispersive shocks

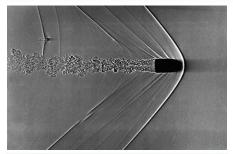
Whitham theory

Perturbed Whitham theory

Shallow-water

#### BEC

# E. Mach experiment

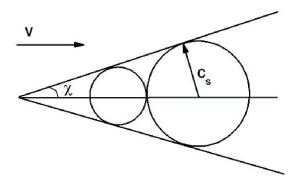




# Nuclear test: July 1945, New Mexico



# Mach-Cherenkov cone



$$\sin\chi = \frac{c_s}{V} = \frac{1}{M}$$

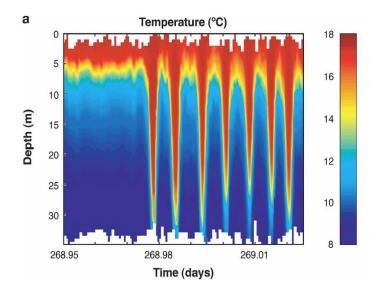
# Undular bore: Dordogne river, France



# Morning glory: Australia

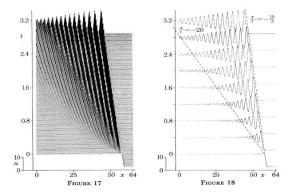


#### Internal water wave: Oregon coast



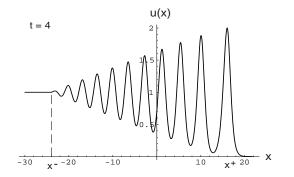
Numerical solution of the KdV equation  $u_t + uu_x + u_{xxx} = 0$ with a step-like initial condition

$$u(x,0) = \begin{cases} 0, & x < 0\\ -1, & x > 0 \end{cases}$$



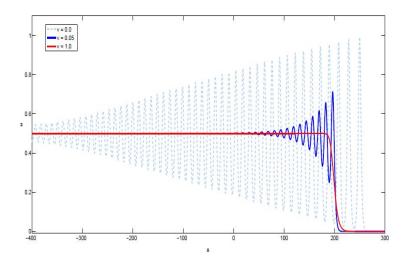
From *B. Fornberg and G.B. Whitham, Phil. Trans. Royal Soc. London,* **289,** 32 (1978)

According to Gurevich-Pitaevskii (1973) approach based on the Whitham (1965) modulation theory theory and in agreement with numerics, if the jump of a step-like pulse is equal to 1, then the amplitude of a leading soliton is equal to 2.



#### What happens if a small friction is added?

 $u_t + 6uu_x + u_{xxx} = \nu u_{xx}$ 



In the papers

- R.S. Johnson, J. Fluid Mech. 42, 49 (1970)
- V.V. Avilov, I.M. Krichever, S.P. Novikov, DAN SSSR, **294**, 325 (1987)
- A.V. Gurevich, L.P. Pitaevskii, ZhETF 93, 871 (1987)

it was shown that asymptotically, instead of an expanding shock, we get a stationary shock with the amplitude of a leading soliton equal to 3/2.

Thus even small disturbances of the evolutional equations lead to qualitative changes in the asymptotic evolution. Hence we need the perturbation theory for Whitham modulation approach.

#### Whitham theory

We suppose that non-perturbed evolution equations are completely integrable in framework of Ablowitz-Kaup-Newell-Segur (AKNS) scheme.

 $u_{m,t} = K_m(u_n, u_{n,x}, \ldots) + R_m(x, t, u_n, u_{n,x}, \ldots), \qquad m, n = 1, \ldots, N,$ 

This means that the undisturbed equations  $u_{m,t} = K_m(u_n, u_{n,x}, ...)$  can be expressed as compatibility conditions of two linear equations

$$\psi_{xx} = \mathcal{A}\psi, \quad \psi_t = -\frac{1}{2}\mathcal{B}_x\psi + \mathcal{B}\psi_x$$

where  $\mathcal{A} = \mathcal{A}(u_n, u_{n,x}, ...; \lambda)$ ,  $\mathcal{B} = \mathcal{B}(u_n, u_{n,x}, ...; \lambda)$ , and  $\lambda$  is a free spectral parameter.

# Example 1 (Gardner, Green, Kruskal, Miura, (1967)) The KdV equation

 $u_t + 6uu_x + u_{xxx} = 0$ 

is a consequence of the compatibility condition  $(\psi_t)_{xx} = (\psi_{xx})_t$  with

$$\mathcal{A} = -(u+\lambda), \qquad \mathcal{B} = 4\lambda - 2u.$$

Example 2 (Zakharov, Shabat, (1971)). The NLS equation

 $iu_t + u_{xx} + 2|u|^2 u = 0$ 

corresponds to

$$\mathcal{A} = -\left(\lambda - rac{\mathrm{i}u_x}{2u}
ight)^2 - |u|^2 - \left(rac{u_x}{2u}
ight)_x, \qquad \mathcal{B} = 2\lambda + rac{\mathrm{i}u_x}{u}.$$

# Finite-gap integration method (S.P. Novikov, B.A. Dubrovin, I.M. Krichever et al., 1974–1976)

The periodic solution

 $u_m(x,t) = u_m(x,t;\lambda_1,\ldots,\lambda_M), \quad m = 1,\ldots,N.$ 

of unperturbed equations

 $u_{m,t} = K_m(u_n, u_{n,x}, \ldots), \qquad m, n = 1, \ldots, N,$ 

depends on space coordinate x and time t and several parameters  $\lambda_1, \ldots, \lambda_M$  ("integration constants") which appear naturally in the "finite-gap integration method" as zeroes of some polynomial

$$P(\lambda) = \prod_{i=1}^{M} (\lambda - \lambda_i).$$

The second-order differential equation

$$\psi_{xx} = \mathcal{A}\psi, \quad \mathcal{A} = \mathcal{A}(u_n, u_{n,x}, \ldots; \lambda)$$

has two basis solutions  $\psi^+$ ,  $\psi^-$ . Their product

$$g = \psi^+ \psi^-$$

satisfies the 3rd order differential equation

$$g_{xxx} - 2\mathcal{A}_x g - 4\mathcal{A} g_x = 0,$$

which upon multiplication by g/2 can be integrated once to give

$$\frac{1}{2}gg_{xx} - \frac{1}{4}g_x^2 - \mathcal{A}g^2 = \pm P(\lambda).$$

Quasiperiodic solutions correspond to polynomial dependence of  $P(\lambda)$  on  $\lambda$ .

From

$$\psi_t = -\frac{1}{2}\mathcal{B}_x\psi + \mathcal{B}\psi_x, \quad \mathcal{B} = \mathcal{B}(u_n, u_{n,x}, \dots; \lambda)$$

we get the time-dependence of  $g = \psi^+ \psi^-$ ,

$$g_t = \mathcal{B}g_x - \mathcal{B}_x g,$$

which yields the generation function of conservation laws:

$$\left(\frac{1}{\tilde{g}}\right)_t = \left(\frac{\mathcal{B}}{\tilde{g}}\right)_x$$

where

$$\tilde{g} = \frac{\lambda^{r/2}}{\sqrt{P(\lambda)}}g, \quad \tilde{g}|_{\lambda \to \infty} = 1.$$

We expand  $\tilde{g}$  and  $1/\tilde{g}$  in inverse powers of  $\lambda$ ,

$$\tilde{g} = \sum_{n=0}^{\infty} \frac{g_n}{\lambda^n}, \quad \frac{1}{\tilde{g}} = \sum_{n=0}^{\infty} \frac{g_{-n}}{\lambda^n}, \quad g_0 = 1.$$

and the coefficients  $g_n$ ,  $g_{-n}$  are calculated in recurrent way. These coefficients  $g_{-n}$  serve as the densities of the conservation laws and the coefficients of similar expansion of  $\mathcal{B}/\tilde{g}$  in inverse powers of  $\lambda$  serve as the corresponding fluxes,

 $(g_{-n})_t = [(\mathcal{B}/\tilde{g})_{-n}]_x,$ 

where  $(\mathcal{B}/\tilde{g})_{-n}$  denotes the coefficients in the expansion

$$\frac{\mathcal{B}}{\tilde{g}} = \sum_{n=0}^{\infty} \frac{(\mathcal{B}/\tilde{g})_{-n}}{\lambda^n}.$$

KdV dispersive shoc

Whitham theory

$$\left(\frac{\sqrt{P(\lambda)}}{\lambda^{r/2}} \cdot \frac{1}{g}\right)_t - \left(\frac{\sqrt{P(\lambda)}}{\lambda^{r/2}} \cdot \frac{\mathcal{B}}{g}\right)_x = 0.$$

Here the zeroes  $\lambda_i$  of the polynomial  $P(\lambda)$  are slow functions of x and t which have to be differentiated with respect to x and t. Then we obtain the terms with

$$\frac{1}{\sqrt{\lambda - \lambda_i}} \frac{\partial \lambda_i}{\partial t}$$
 and  $\frac{1}{\sqrt{\lambda - \lambda_i}} \frac{\partial \lambda_i}{\partial x}$ ,

which are singular at  $\lambda \rightarrow \lambda_i$ . Hence we obtain

$$\frac{\partial \lambda_i}{\partial t} + v_i \frac{\partial \lambda_i}{\partial x} = 0 \quad i = 1, \dots, M,$$

where

$$v_i = -\frac{\langle \mathcal{B}/g \rangle}{\langle 1/g \rangle}, \quad i = 1, \dots, M, \quad \langle \mathcal{F} \rangle = \frac{1}{L} \int_0^L \mathcal{F} dx.$$

V dispersive shocks W

Whitham theory Per

# Example. The KdV equation

 $u_t + 6uu_x + u_{xxx} = 0$ 

corresponds to

 $\mathcal{A} = -(u+\lambda), \quad \mathcal{B} = 4\lambda - 2u.$ 

One-phase solution is obtained from

$$\frac{1}{2}gg_{xx} - \frac{1}{4}g_x^2 + (u+\lambda)g^2 = P(\lambda)$$

if

$$P(\lambda) = \prod_{i=1}^{3} (\lambda - \lambda_i) = \lambda^3 - s_1 \lambda^2 + s_2 \lambda - s_3, \quad g = \lambda - \mu$$

and is given by

$$u(x,t) = \lambda_3 - \lambda_1 - \lambda_2 - 2(\lambda_3 - \lambda_2)\operatorname{sn}^2(\sqrt{\lambda_3 - \lambda_1} (x - Vt), m),$$

$$L = \frac{1}{2} \oint \frac{\mathrm{d}\mu}{\sqrt{-P(\mu)}} = \frac{2\mathrm{K}(m)}{\sqrt{\lambda_3 - \lambda_1}}, \quad V = -2\sum \lambda_i, \quad m = \frac{\lambda_3 - \lambda_2}{\lambda_3 - \lambda_1}.$$

#### Whitham equations for KdV cnoidal wave

In Whitham modulation theory the parameters  $\lambda_i$  become slow functions of x and t which change little in one wavelength L and one period. Evolution of the parameters  $\lambda_i$  is governed by the Whitham equations

$$\frac{\partial \lambda_i}{\partial t} + v_i \frac{\partial \lambda_i}{\partial x} = 0 \quad i = 1, 2, 3,$$

where  $v_i(\lambda)$  are Whitham velocities

$$v_i = -\frac{\langle \mathcal{B}/g \rangle}{\langle 1/g \rangle} = \frac{\langle (4\lambda_i - 2u)/g \rangle}{\langle 1/g \rangle}, \quad i = 1, 2, 3$$

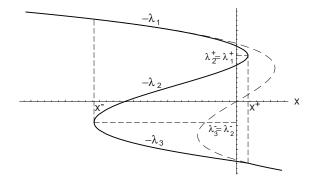
and

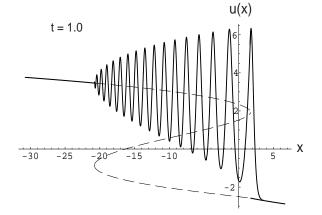
$$v_i = \left(1 - \frac{L}{\partial_i L}\partial_i\right)V, \quad \partial_i \equiv \frac{\partial}{\partial \lambda_i}, \quad i = 1, 2.3, \quad V = -2\sum \lambda_i.$$

Solutions  $\lambda_i = \lambda_i(x, t)$  of the Whitham equations substituted into the cnoidal wave expression,

 $u=u(x,t;\lambda_1(x,t),\lambda_2(x,t),\lambda_3(x,t))$  describe the dispersive shock.

# Dispersive KdV shock generated after wave breaking point





# Perturbed Whitham theory (A.M. Kamchatnov, Physica D, 188, 247 (2004))

If we take into account the perturbation terms in the evolution equations

 $u_{m,t} = K_m(u_n, u_{n,x}, \ldots) + R_m(x, t, u_n, u_{n,x}, \ldots), \qquad m, n = 1, \ldots, N,$ 

then the parameters  $\lambda_i$  evolve not only because of modulation of the wave, but also due to contribution of perturbation.

Example: perturbed KdV equation

 $u_t = -6uu_x - u_{xxx} + R(u, u_x, u_{xx}, \ldots)$ 

We have to calculate modification of conservation laws due to disturbance.

#### **Perturbed Whitham theory**

# Example: perturbed KdV equation

$$u_t = -6uu_x - u_{xxx} + R(u, u_x, u_{xx}, \ldots)$$

Conservation laws are modified to

$$\frac{\partial g_{-n}}{\partial t} = \sum_{k=0}^{l} \frac{\partial g_{-n}}{\partial u^{(k)}} \frac{\partial u^{(k)}}{\partial t} = \sum_{k=0}^{l} \frac{\partial g_{-n}}{\partial u^{(k)}} \frac{\partial^{k}}{\partial x^{k}} u_{t}$$
$$= [(\mathcal{B}/\tilde{g})_{-n}]_{x} + \sum_{k=0}^{l} \frac{\partial g_{-n}}{\partial u^{(k)}} \frac{\partial^{k} R}{\partial x^{k}}.$$

or

$$\left(\frac{1}{\tilde{g}}\right)_t - \left(\frac{\mathcal{B}}{\tilde{g}}\right)_x = \sum_{n=0}^{\infty} \frac{1}{\lambda^n} \left(\frac{\widehat{\delta}}{\delta u} g_{-n}\right) R = \left(\frac{\widehat{\delta}}{\delta u} \frac{1}{\tilde{g}}\right) R.$$

# Dubrovin's lemma (1975):

$$\tilde{g} = 2\lambda \frac{\delta}{\delta u} \frac{1}{\tilde{g}}.$$

We get

$$\left(\frac{\sqrt{P(\lambda)}}{\lambda^{1/2}}\cdot\frac{1}{g}\right)_t - \left(\frac{\sqrt{P(\lambda)}}{\lambda^{1/2}}\cdot\frac{4\lambda-2u}{g}\right)_x = \frac{1}{2\lambda}\sqrt{\frac{\lambda}{P(\lambda)}}\cdot gR.$$

and the Whitham equations take the form

$$\frac{\partial \lambda_i}{\partial t} + v_i \frac{\partial \lambda_i}{\partial x} = -\frac{1}{\prod_{j \neq i} (\lambda_i - \lambda_j)} \cdot \frac{\langle gR \rangle}{\langle 1/g \rangle} \quad i = 1, 2, 3.$$

#### Generalization to the AKNS scheme

We arrive at modified Whitham equations

$$\frac{\partial \lambda_i}{\partial t} + v_i \frac{\partial \lambda_i}{\partial x} = \frac{1}{\prod_{j \neq i} (\lambda_i - \lambda_j)} \cdot \frac{\pm 1}{\langle 1/g \rangle} \sum_{m=1}^N \sum_{l=0}^{A_m} \Big\langle \frac{\partial \mathcal{A}}{\partial u_m^{(l)}} \frac{\partial^l R_m}{\partial x^l} g \Big\rangle,$$

where  $v_i(\lambda)$  are usual Whitham velocities, the angle brackets denote averaging over wavelength,

$$\langle \mathfrak{F} \rangle = \frac{1}{L} \int_0^L \mathfrak{F} dx$$

and everywhere  $\lambda$  is put equal to  $\lambda_i$ .

# Kaup-Boussinesq-Burgers equation

G.A. El, R.H.J. Grimshaw, AMK, Chaos, **15**, 037102 (2005) Two-directional shallow flow can be described by the Kaup-Boussinesq system

$$h_t + (hu)_x + \frac{1}{4}u_{xxx} = 0, u_t + uu_x + h_x = \nu u_{xx}.$$

The unperturbed system ( $\nu = 0$ ) is completely integrable and corresponds to

$$\mathcal{A} = \left(\lambda - \frac{1}{2}u\right)^2 - h, \qquad \mathcal{B} = -\left(\lambda + \frac{1}{2}u\right).$$

Its periodic solution is parameterized by the zeroes of the fourth-degree polynomial

$$P(\lambda) = \prod_{i=1}^{4} (\lambda - \lambda_i) = \lambda^4 - s_1 \lambda^3 + s_2 \lambda^2 - s_3 \lambda + s_4$$
$$\lambda_1 \le \lambda_2 \le \lambda_3 \le \lambda_4.$$

# The periodic solution has the form

$$u(x,t) = s_1 - 2\mu(\theta), \quad h(x,t) = \frac{1}{4}s_1^2 - s_2 - 2\mu^2(\theta) + s_1\mu(\theta),$$

where

$$\mu(\theta) = \frac{\lambda_2(\lambda_3 - \lambda_1) - \lambda_1(\lambda_3 - \lambda_2)\operatorname{sn}^2\left(\sqrt{(\lambda_4 - \lambda_2)(\lambda_3 - \lambda_1)}\,\theta, m\right)}{\lambda_3 - \lambda_1 - (\lambda_3 - \lambda_2)\operatorname{sn}^2\left(\sqrt{(\lambda_4 - \lambda_2)(\lambda_3 - \lambda_1)}\,\theta, m\right)}$$
$$m = \frac{(\lambda_3 - \lambda_2)(\lambda_4 - \lambda_1)}{(\lambda_4 - \lambda_2)(\lambda_3 - \lambda_1)}.$$
and  $\theta = x - \frac{1}{2}s_1t$ .

In a modulated wave and with account of friction the parameters  $\lambda_i$  satisfy the Whitham equations

$$\frac{\partial \lambda_i}{\partial t} + v_i \frac{\partial \lambda_i}{\partial x} = \rho_i, \quad i = 1, 2, 3, 4.$$

-1

where

$$v_{i} = \frac{s_{1}}{2} - \frac{L}{2} \left(\frac{\partial L}{\partial \lambda_{i}}\right)^{-1},$$

$$\rho_{i} = \frac{1}{\prod_{j \neq i} (\lambda_{i} - \lambda_{j})} \cdot \frac{8\nu}{(\partial L/\partial \lambda_{i})} \int_{\lambda_{2}}^{\lambda_{3}} (\mu - s_{1}/4) \sqrt{P(\mu)} \, d\mu,$$

$$L = \int_{\lambda_{2}}^{\lambda_{3}} \frac{d\mu}{\sqrt{P(\mu)}} = \frac{2\mathrm{K}(m)}{\sqrt{(\lambda_{4} - \lambda_{2})(\lambda_{3} - \lambda_{1})}}.$$

# Steady solution of the Whitham equations

If we look for the solution of the Whitham equations in the form

$$\lambda_i = \lambda_i(\theta), \qquad \theta = x - ct, \quad c = s_1/2,$$

then we can reduce it to the system of ordinary differential equations

$$rac{d\lambda_i}{d heta} = rac{Q}{\prod_{j 
eq i} (\lambda_i - \lambda_j)},$$

where the factor

$$Q = -\frac{8\nu}{L} \int_{\lambda_2}^{\lambda_3} (\mu - s_1/4) \sqrt{P(\mu)} \, d\mu$$

is the same for all i = 1, 2, 3, 4.

# Jacobi identities (Dissertatio 1825; Werke Bd. 3):

$$\sum_{i=1}^{n} \frac{1}{\prod_{j \neq i} (\lambda_i - \lambda_j)} = 0, \quad \sum_{i=1}^{n} \frac{\sum_{j=1}^{j} \lambda_j}{\prod_{j \neq i} (\lambda_i - \lambda_j)} = 0,$$
$$\sum_{i=1}^{n} \frac{\sum_{j=1}^{j} \lambda_j \lambda_k}{\prod_{j \neq i} (\lambda_i - \lambda_j)} = 0, \dots \quad \sum_{i=1}^{n} \frac{1}{\lambda_i \prod_{j \neq i} (\lambda_i - \lambda_j)} = \frac{(-1)^{n-1}}{s_n}$$

where prime means that all terms with the factor  $\lambda_i$  are omitted in the corresponding sum. The special structure of Whitham equations provides three integrals  $s_1, s_2, s_3$ ,

$$\frac{ds_1}{dx} = 0, \quad \frac{ds_2}{dx} = 0, \quad \frac{ds_3}{dx} = 0.$$

Thus, in the steady solution only the last coefficient  $s_4$  varies with  $\theta = x - ct$  according to the equation

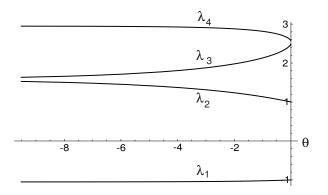
$$\frac{ds_4}{d\theta} = \frac{8\nu}{L} \int_{\lambda_2(s_4)}^{\lambda_3(s_4)} (\mu - s_1/4) \sqrt{P(\mu)} \, d\mu,$$

which can be easily solved numerically for given constant values of  $s_1, s_2, s_3$ .

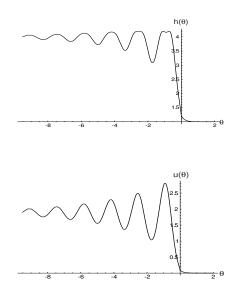
# Equation

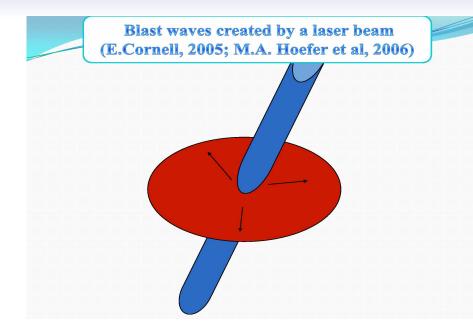
$$P(\lambda) = \lambda^4 - s_1 \lambda^3 + s_2 \lambda^2 - s_3 \lambda + s_4 = 0$$

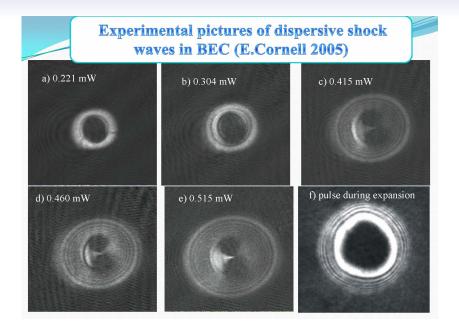
yields the zeroes  $\lambda_i$  as functions of  $s_4 = s_4(\theta)$ :

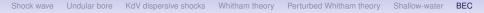


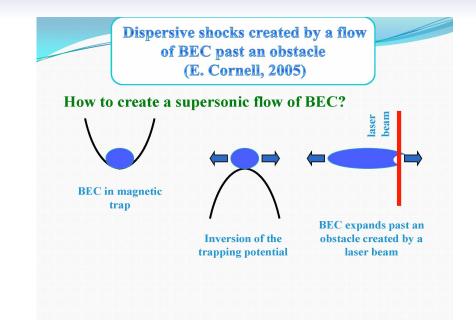
Substitution of  $\lambda_i(\theta)$  gives the oscillating structure of the undular bore

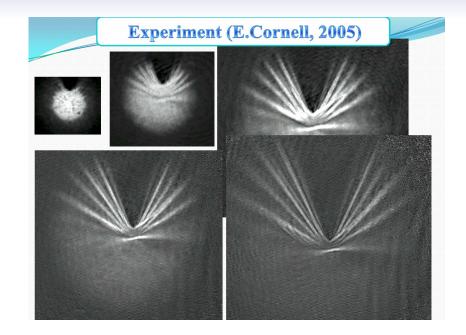


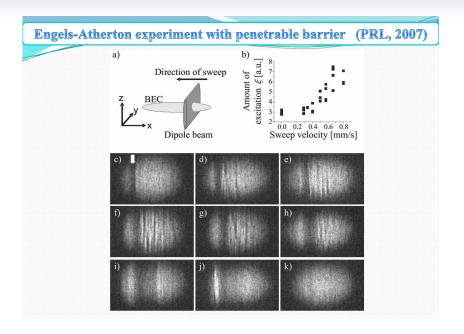


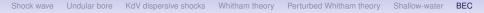


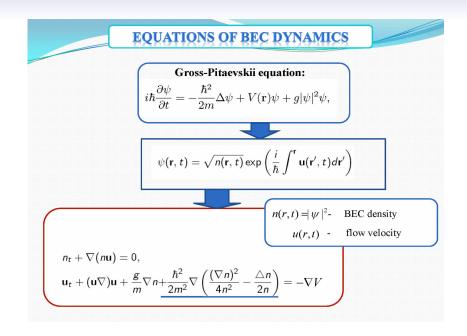












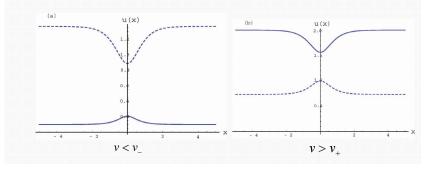
### Flow past a penetrable barrier (Leszczyszyn, El, Gladush, Kamchatnov, 2009)

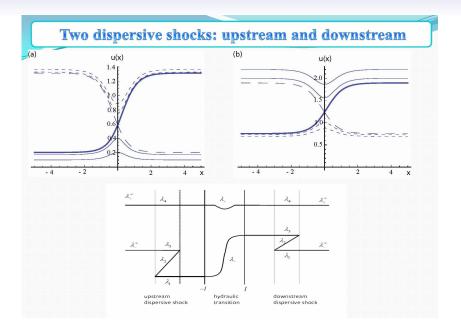
Hydraulic approximation

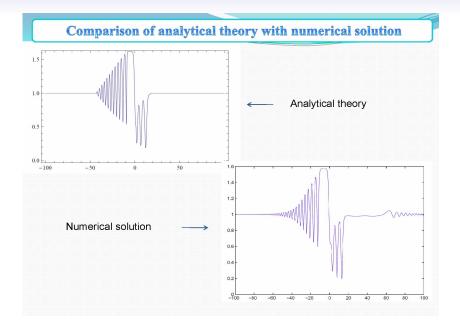
$$(\rho u)_x = 0,$$
  
$$uu_x + \rho_x + V_x(x) = 0,$$

Solution

$$\rho u = v, \quad \tfrac{1}{2}u^2 + \rho + V(x) = \tfrac{1}{2}v^2 + 1\,,$$







### **Polariton condensate**

Polariton dynamics is described by the Gross-Pitaevskii equation with account of pumping and dissipation

$$i\psi_t + \frac{1}{2}\psi_{xx} - |\psi|^2\psi = V(x)\psi + i(\gamma - \Gamma|\psi|^2)\psi$$

Periodic solution ( $\rho = |\psi|^2$ )

$$\rho = \frac{1}{4} (\lambda_1 - \lambda_2 - \lambda_3 + \lambda_4)^2 + (\lambda_2 - \lambda_1)(\lambda_4 - \lambda_3)$$
$$\times \operatorname{sn}^2(\sqrt{(\lambda_4 - \lambda_2)(\lambda_3 - \lambda_1)} \theta, m),$$

where

$$\theta = x - Ut, \quad U = \frac{1}{2}(\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4)$$

BEC

## Whitham equations

$$\frac{d\lambda_i}{dx} = \frac{2}{L} \cdot \frac{I_1\lambda_i + I_2}{\prod_{m \neq i} (\lambda_i - \lambda_m)},$$

## where

$$I_1 = \Gamma \int_{\nu_1}^{\nu_2} \frac{\nu(\rho_0 - \nu)}{\sqrt{\mathcal{R}(\nu)}} d\nu, \quad I_2 = \frac{\Gamma u_0 \rho_0}{2} \int_{\nu_1}^{\nu_2} \frac{\rho_0 - \nu}{\sqrt{\mathcal{R}(\nu)}} d\nu,$$

and

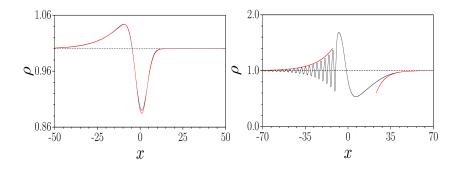
$$\begin{aligned} \mathcal{R} &= (\nu - \nu_1)(\nu - \nu_2)(\nu - \nu_3)\\ \nu_1 &= \frac{1}{4}(\lambda_1 - \lambda_2 - \lambda_3 + \lambda_4)^2,\\ \nu_2 &= \frac{1}{4}(\lambda_1 - \lambda_2 + \lambda_3 - \lambda_4)^2,\\ \nu_3 &= \frac{1}{4}(\lambda_1 + \lambda_2 - \lambda_3 - \lambda_4)^2, \end{aligned}$$

The system has two integrals:

$$\frac{ds_1}{dx} = 0, \quad \frac{ds_2}{dx} = 0, \quad \frac{ds_3}{dx} = \frac{2I_1}{L}, \quad \frac{ds_4}{dx} = -\frac{2I_2}{L}.$$

Solution for the tail of the envelope

$$\delta \nu_1, \delta \nu_2 \propto \exp\left(\frac{\Gamma \rho_0 u_0}{u_0^2 - \rho_0} x\right),$$



# Thank you for your attention!