Shock wave  Undular bore  KdV dispersive shocks ~ Whitham theory ~ Perturbed Whitham theory ~ Shallow-water ~ BEC

Whitham Theory for Perturbed Integrable
Equations and its Applications

Anatoly Kamchatnov

Institute of Spectroscopy, Russia

International Conference “Geometrical Methods in
Mathematical Physics”
Moscow, December 17, 2011



Collaborators

Gennady El, Loughborough University, UK

Arnaldo Gammal, Sao Paulo University, Brazil

Yury Gladush, Institute of Spectroscopy, Russia
Roger Grimshaw, Loughborough University, UK
Yaroslav Kartashov, Institute of Spectroscopy, Russia
Svyatoslav Korneey, Institute of Spectroscopy, Russia
Nicolas Pavloff, Université Paris-Sud, France



Shock wave  Undular bore  KdV dispersive shocks ~ Whitham theory ~ Perturbed Whitham theory ~ Shallow-water ~ BEC

Outline

Shock wave

Undular bore

KdV dispersive shocks
Whitham theory
Perturbed Whitham theory
Shallow-water

BEC



Shock wave

Undular bore

KdV dispersive shocks ~ Whitham theory  Perturbed Whitham theory

E. Mach experiment
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Shock wave

Nuclear test: July 1945, New Mexico
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Undular bore: Dordogne river, France
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Morning glory: Australia
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Depth (m)

Internal water wave: Oregon coast
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Numerical solution of the KdV equation u; + uu, + tgpr = 0
with a step-like initial condition

0, =<0
u(x,O)—{ -1, >0

104 ° —
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0 25 50 x 64 0 25 50 x 64
Froure 17 Froure 18

From B. Fornberg and G.B. Whitham, Phil. Trans. Royal Soc.
London, 289, 32 (1978)

BEC



KdV dispersive shocks

According to Gurevich-Pitaevskii (1973) approach based on the
Whitham (1965) modulation theory theory and in agreement
with numerics, if the jump of a step-like pulse is equal to 1, then
the amplitude of a leading soliton is equal to 2.

10 x+ 20
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What happens if a small friction is added?

Up + Uy + Uppyr = Vg
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KdV dispersive shocks

In the papers

R.S. Johnson, J. Fluid Mech. 42, 49 (1970)

V.V. Aviloy, I.M. Krichever, S.P. Novikov, DAN SSSR, 294, 325
(1987)

A.V. Gurevich, L.P. Pitaevskii, ZhETF 93, 871 (1987)

it was shown that asymptotically, instead of an expanding
shock, we get a stationary shock with the amplitude of a
leading soliton equal to 3/2.

Thus even small disturbances of the evolutional equations lead
to qualitative changes in the asymptotic evolution. Hence we
need the perturbation theory for Whitham modulation approach.



Whitham theory

Whitham theory

We suppose that non-perturbed evolution equations are
completely integrable in framework of
Ablowitz-Kaup-Newell-Segur (AKNS) scheme.

Ut = K (Un, Un g, - ) F R (2,8, Un, Un g, - - ), mn=1,...,N,

This means that the undisturbed equations
Ut = K (Un, Un 4, .. .) CAN be expressed as compatibility
conditions of two linear equations

Voo = A, W=~ B+ B

where A = A(up, tun gz, ...;A), B=B(up, tnz,...; ), and Xis a
free spectral parameter.



Whitham theory

Example 1 (Gardner, Green, Kruskal, Miura, (1967)) The KdV
equation

Up + 6uty + Uger =0

is a consequence of the compatibility condition (¢;)ze = (V2a)¢
with
A=—(u+ M), B =4\ — 2u.

Example 2 (Zakharov, Shabat, (1971)). The NLS equation

iy + Uy + 2]u|2u =0

corresponds to

A——(A—M>Q—U\2—<ux>x7 B—org Mo

2u 2u U
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Finite-gap integration method
(S.P. Novikov, B.A. Dubrovin, .M. Krichever et al., 1974-1976)

The periodic solution
U (2, 1) = upm(z, t; A1, ..., ), m=1,...,N.
of unperturbed equations
Ut = K (Un, Un g, - . ), m,n=1,..., N,

depends on space coordinate = and time ¢ and several
parameters A1, ..., Ay (“integration constants”) which appear
naturally in the “finite-gap integration method” as zeroes of

some polynomial
M

ZEVES | (CEPY

i=1

BEC



Whitham theory

The second-order differential equation
Vpw = A, A= A(up,tung,...;\)
has two basis solutions ", 1)~. Their product
9=
satisfies the 3rd order differential equation
Jzze — 259 — 4Agz = 0,

which upon multiplication by ¢/2 can be integrated once to give

1 1

— 902z — —g2 — Ag® = £P(\).
2 4
Quasiperiodic solutions correspond to polynomial dependence

of P(A) on A.
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From

WP = —%Bﬂ/) + By, B=DB(un, ung,...;\)

we get the time-dependence of g = "¢,
gt = Bg: — By,

which yields the generation function of conservation laws:

(3).- ).

)\r/2

j=—"—"g, § =1
7 P(A)g 7N

where



Whitham theory

We expand g and 1/g in inverse powers of A,

%

and the coefficients g,,, g_,, are calculated in recurrent way.
These coefficients g_,, serve as the densities of the
conservation laws and the coefficients of similar expansion of
B/g in inverse powers of \ serve as the corresponding fluxes,

(9-n)y = [(B/g)-nl.»

where (B/g)—, denotes the coefficients in the expansion

(B
72 /g

o0
= g_n

>/‘<Q
Q| =

n=0



Whitham theory

/\r/2 g )\7’/2 g

(mg) (\/W.[”) =0.

Here the zeroes \; of the polynomial P(\) are slow functions of
x and t which have to be differentiated with respect to x and ¢.
Then we obtain the terms with
1 o\ 1 9o\
Vo v T ) v v e
which are singular at A — \;. Hence we obtain
O\ O\

— = =1,...,.M
8t +Ula$ 0 Z ) ) )
where
1 L
vi:—@, i=1,...,M, <]:>:/ Fdzx.
(1/9) L Jo
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Example. The KdV equation
U + 6ulUy + Uypgy =0
corresponds to
A=—(u+2X), B=4\—2u.
One-phase solution is obtained from
39922 — 192 + (u+A)g? = P(N)

3
PO =TI = 2) =X =510 4 s — 53, g=A—p
i=1

and is given by

u(w,t) = Az — A — A2 — 2(A3 — A2)sn? (VA3 — A1 (z — Vi), m),

1 du 2K(m) )\3 - )\2
L:f - S v=—=25S"\ m= .
2) /-Pu) VAs—-M 2 Az — A1



Whitham theory

Whitham equations for KdV cnoidal wave

In Whitham modulation theory the parameters \; become slow
functions of = and ¢ which change little in one wavelength L and
one period. Evolution of the parameters J\; is governed by the
Whitham equations

O\ o .

ﬁ—’—vl%—o 2—17273,
where v;(\) are Whitham velocities

(Blg) _{(4Ai=2w/g) .,

T T 1) gy

and

L 0 .
vi—<1—aiL01->V, &:mi’ i=1,23 V=-2) A

Solutions A\; = \;(z, t) of the Whitham equations substituted

into the cnoidal wave expression,
u=u(xz,t; \(z,t), \a(x,t), \3(x, t)) describe the dispersive

shock.
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Dispersive KdV shock generated after wave breaking point




Whitham theory

t=10




Perturbed Whitham theory

Perturbed Whitham theory
(A.M. Kamchatnov, Physica D, 188, 247 (2004))

If we take into account the perturbation terms in the evolution
equations
Ut = K (Un, Un gy - . )+ R (2,6, Up s U o, - ), m,n=1,..., N,

then the parameters \; evolve not only because of modulation
of the wave, but also due to contribution of perturbation.

Example: perturbed KdV equation

up = —6uty — Ugzy + R(u, Uy, Ugg, - . .)

We have to calculate modification of conservation laws due to
disturbance.
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Perturbed Whitham theory

Example: perturbed KdV equation

up = —6uly — Upgy + R(U, Uy, Uy, - . .)

Conservation laws are modified to

or

09—n _ i 09—n ou®) _ i 9g—n "

k i) Ak Ut
ot Pt ouk) ot prt oulk) Ox
l
_ dg_n O*R
=[(B/3)-nl, + Z ouk) Ok

k=0

Shallow-water

B =1 (3 51
)~ ().~ (ag> " (59) "

BEC
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Dubrovin’s lemma (1975):

B 51
We get
VPN 1 VP(A) 4N —2u
M2 g ) a2 Ty

and the Whitham equations take the form

O\; O\ 1 (gR)

)

1

7

o s T LA A) (1)

[ A
m-gR.

=1,2,3.

BEC
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Generalization to the AKNS scheme

We arrive at modified Whitham equations

N O\ 1 A 'Ry,
E”Z’%:H#i(xi—xj l/g ZZ<@ O ozt I >

where v;(\) are usual Whitham velocities, the angle brackets
denote averaging over wavelength,

1 L
- d
L/OS"E

and everywhere X is put equal to );.

BEC
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Kaup-Boussinesq-Burgers equation

G.A. El, R.H.J. Grimshaw, AMK, Chaos, 15, 037102 (2005)
Two-directional shallow flow can be described by the
Kaup-Boussinesq system

he + (hu)x + %U:m:x =0,

U + Uy + Ry = Vgy.
The unperturbed system (v = 0) is completely integrable and
corresponds to

1)\? 1
Az(A—2u> —h, B:—(A+2u>.

Its periodic solution is parameterized by the zeroes of the
fourth-degree polynomial
4
PO =TT =) = A = 510% 4+ 5207 — 53X + 54
=1

A< A < A3 <\
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The periodic solution has the form
u(z,t) = s1 —2u(0), h(x,t)=Ls] —so—242(0) + s1u(0),

where

)\2()\3 — )\1) — /\1(/\3 — )\2)Sn2 (\/()\4 — AQ)()\;), — )\1) 0,m>

n(0) =
Xs = M = (g = Aa)sn? (/O = 22) 0 — A1) 6,m)

(A3 — A2)(Ag — A1)
T =) - A

and § =z — %slt.
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In a modulated wave and with account of friction the
parameters \; satisfy the Whitham equations

o\ N .
5 —|—vz% =p;, 1=1,23,4.

s L (oL
T 9\ )

v A3
! 5 (A (i — 51/4)V/P() du,

P IL a0 — Ay (0Ljox) Uy,

_ A dy _ 2K (m)
v VPV a =)z = A1)

where

L

BEC
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Steady solution of the Whitham equations

If we look for the solution of the Whitham equations in the form
Ai = \i(0), 0=x—ct, c=s1/2,

then we can reduce it to the system of ordinary differential

equations
d\; Q

g Hj;éi()‘i - /\j)7

where the factor

A3
Q=" (1 51/ PG d

A2

is the same for all i = 1,2, 3, 4.



Shallow-water

Jacobi identities (Dissertatio 1825; Werke Bd. 3):
Z 0 PIRED IS, sy H -0

J#Z j;éz J )

n )\ A 1 -1 n—1
> XMy _
< [z = A5) = N [1j (A = ) Sn

where prime means that all terms with the factor \; are omitted
in the corresponding sum. The special structure of Whitham
equations provides three integrals s1, so, s3,

dsy dso ds3

— = — = — =0.

dz 0, dz 0, dx
Thus, in the steady solution only the last coefficient s, varies
with § = x — ¢t according to the equation

ds Sy [As(sa)
o A (1 — 1/4)v/P(u) d,

2(s4)

which can be easily solved numerically for given constant
values of si. s9. sa.



Equation

P = A — 5103 4 5907 — 53\ + 54 =0
yields the zeroes \; as functions of sy = s4(6):

A .
—
As Al
T
8 -6 4 2
M

Shallow-water



Shallow-water

Substitution of \;(#) gives the oscillating structure of the
undular bore
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Blast waves created by a laser beam
(E.Cornell, 2005; M.A. Hoefer et al, 2006)
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Experimental pictures of dispersive shock
waves in BEC (E.Cornell 2005)

a) 0.221 mW b) 0.304 mW ¢) 0.415 mW

{

d) 0.460 mW e) 0515 mW f) pulse dun'ng expansion
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Dispersive shocks created by a flow
of BEC past an obstacle
(E. Cornell, 2005)

How to create a supersonic flow of BEC?

laser
beam

BEC in magnetic
trap

BEC expands past an
Inversion of the obstacle created by a
trapping potential laser beam
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[ Engels-Atherton experiment with penetrable barrier (PRL, 2007) }
/ a) b

=

=

Amount of
excitation ¢ [a.u.]

Direction of sweep
et

8
7
6
5
BE! 4
3

.0 02 04 06 0.8
Dipole beam Sweep velocity [mm/s]
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/ EQUATIONS OF BEC DYNAMICS ]/

=

Gross-Pitaevskii equation:

N o ) 2
ihgy = —5-Ab + V()Y + gy,

4.

n(r, t)exp(h/ v t)dr )
!—

-
Ln(r ,0)=|w|*- BEC density

u(r,t) - flow velocity

ne+ V(nu) =0,

(VP AnY _
4n? 2n =-VV

u; + (uV)u + = VnJrﬁV (
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| Flow past a penetrable barrier
(Leszezyszyn, El, Gladush, Kamchatnov, 2009)
Hydraulic approximation
(pu): =0,
Uy + pr + Vi(x) =0,
Solution
pu=uv %u2+p+V(m):%vQ+1,
__ia_) _________ i (0} u(x)
—d/

BEC
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Two dispersive shocks: upstream and downstream F

4 -2 2 4 x -4 2 2 4 x

A7 Ay 2, Ay 2

’11

A,

A’ A A

4 i &

A
~1 1
upstream hydraulic downstream

dispersive shock transition dispersive shock
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! Comparison of analytical theory with numerical solution ?

<——  Analytical theory

05

0.0k, L L L -l
-100 =50 o 50 1.4

1 WNWM M AAAna]
Numerical solution —_— . ,
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Polariton condensate

Polariton dynamics is described by the Gross-Pitaevskii
equation with account of pumping and dissipation

W + 500 — Y19 = V(@) +i(y = T,
Periodic solution (p = |¢|?)

p = %()\1 — Ao — A3+ )\4)2 + ()\2 — )\1)()\4 — )\3)
X SHQ(\/(A4 — /\2)()\3 — )\1) H,m),

where
0=z—Ut, U:%()\1+)\2+)\3+/\4)

Shallow-water

BEC
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Whitham equations

ax, 2 L\ + 1y
iz "L Thathi— )
where
"2 v(po —v) LCugpo [ po — v
I = F/ ———dv, I, =
n VRW) =7 ), VR
and

R=w-—v)(v—u2)(v—u3)
=1 — A= A3+ )%,
= 10 = Ao+ A3 — M)?,
vy = 1A+ X2 — Az — \g)?,
The system has two integrals:
@ dsg dsg 2 dsy

de 7 dr ' dx L dr

2L

7
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Solution for the tail of the envelope

r
vy, vy X exp (Mw) ,

Uy — PO

1.06 20

Q0.96+ \ Q10 /«WVWWW}UA\\/

0.86 T T T 00 T T T
-50 -25 0 25 50 -70 -35 0 35 70
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Thank you for your attention!
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