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E. Mach experiment
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Nuclear test: July 1945, New Mexico



Shock wave Undular bore KdV dispersive shocks Whitham theory Perturbed Whitham theory Shallow-water BEC

Mach-Cherenkov cone

sinχ =
cs
V

=
1

M
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Undular bore: Dordogne river, France
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Morning glory: Australia
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Internal water wave: Oregon coast
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Numerical solution of the KdV equation ut + uux + uxxx = 0
with a step-like initial condition

u(x, 0) =

{
0, x < 0
−1, x > 0

From B. Fornberg and G.B. Whitham, Phil. Trans. Royal Soc.
London, 289, 32 (1978)
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According to Gurevich-Pitaevskii (1973) approach based on the
Whitham (1965) modulation theory theory and in agreement
with numerics, if the jump of a step-like pulse is equal to 1, then
the amplitude of a leading soliton is equal to 2.
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What happens if a small friction is added?

ut + 6uux + uxxx = νuxx
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In the papers
R.S. Johnson, J. Fluid Mech. 42, 49 (1970)
V.V. Avilov, I.M. Krichever, S.P. Novikov, DAN SSSR, 294, 325
(1987)
A.V. Gurevich, L.P. Pitaevskii, ZhETF 93, 871 (1987)
it was shown that asymptotically, instead of an expanding
shock, we get a stationary shock with the amplitude of a
leading soliton equal to 3/2.
Thus even small disturbances of the evolutional equations lead
to qualitative changes in the asymptotic evolution. Hence we
need the perturbation theory for Whitham modulation approach.
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Whitham theory

We suppose that non-perturbed evolution equations are
completely integrable in framework of
Ablowitz-Kaup-Newell-Segur (AKNS) scheme.

um,t = Km(un, un,x, . . .)+Rm(x, t, un, un,x, . . .), m, n = 1, . . . , N,

This means that the undisturbed equations
um,t = Km(un, un,x, . . .) can be expressed as compatibility
conditions of two linear equations

ψxx = Aψ, ψt = −1

2
Bxψ + Bψx

where A = A(un, un,x, . . . ;λ), B = B(un, un,x, . . . ;λ), and λ is a
free spectral parameter.
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Example 1 (Gardner, Green, Kruskal, Miura, (1967)) The KdV
equation

ut + 6uux + uxxx = 0

is a consequence of the compatibility condition (ψt)xx = (ψxx)t
with

A = −(u+ λ), B = 4λ− 2u.

Example 2 (Zakharov, Shabat, (1971)). The NLS equation

iut + uxx + 2|u|2u = 0

corresponds to

A = −
(
λ− iux

2u

)2

− |u|2 −
(ux

2u

)
x
, B = 2λ+

iux
u
.
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Finite-gap integration method
(S.P. Novikov, B.A. Dubrovin, I.M. Krichever et al., 1974–1976)

The periodic solution

um(x, t) = um(x, t;λ1, . . . , λM ), m = 1, . . . , N.

of unperturbed equations

um,t = Km(un, un,x, . . .), m, n = 1, . . . , N,

depends on space coordinate x and time t and several
parameters λ1, . . . , λM (“integration constants”) which appear
naturally in the “finite-gap integration method” as zeroes of
some polynomial

P (λ) =

M∏
i=1

(λ− λi).
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The second-order differential equation

ψxx = Aψ, A = A(un, un,x, . . . ;λ)

has two basis solutions ψ+, ψ−. Their product

g = ψ+ψ−

satisfies the 3rd order differential equation

gxxx − 2Axg − 4Agx = 0,

which upon multiplication by g/2 can be integrated once to give

1

2
ggxx −

1

4
g2x −Ag2 = ±P (λ).

Quasiperiodic solutions correspond to polynomial dependence
of P (λ) on λ.
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From

ψt = −1

2
Bxψ + Bψx, B = B(un, un,x, . . . ;λ)

we get the time-dependence of g = ψ+ψ−,

gt = Bgx − Bxg,

which yields the generation function of conservation laws:(
1

g̃

)
t

=

(
B
g̃

)
x

where

g̃ =
λr/2√
P (λ)

g, g̃|λ→∞ = 1.
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We expand g̃ and 1/g̃ in inverse powers of λ,

g̃ =

∞∑
n=0

gn
λn
,

1

g̃
=

∞∑
n=0

g−n
λn

, g0 = 1,

and the coefficients gn, g−n are calculated in recurrent way.
These coefficients g−n serve as the densities of the
conservation laws and the coefficients of similar expansion of
B/g̃ in inverse powers of λ serve as the corresponding fluxes,

(g−n)t = [(B/g̃)−n]x ,

where (B/g̃)−n denotes the coefficients in the expansion

B
g̃

=

∞∑
n=0

(B/g̃)−n
λn

.
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(√
P (λ)

λr/2
· 1

g

)
t

−

(√
P (λ)

λr/2
· B
g

)
x

= 0.

Here the zeroes λi of the polynomial P (λ) are slow functions of
x and t which have to be differentiated with respect to x and t.
Then we obtain the terms with

1√
λ− λi

∂λi
∂t

and
1√

λ− λi
∂λi
∂x

,

which are singular at λ→ λi. Hence we obtain
∂λi
∂t

+ vi
∂λi
∂x

= 0 i = 1, . . . ,M,

where

vi = −〈B/g〉
〈1/g〉

, i = 1, . . . ,M, 〈F〉 =
1

L

∫ L

0
Fdx.
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Example. The KdV equation

ut + 6uux + uxxx = 0

corresponds to

A = −(u+ λ), B = 4λ− 2u.

One-phase solution is obtained from
1
2ggxx −

1
4g

2
x + (u+ λ)g2 = P (λ)

if

P (λ) =
3∏
i=1

(λ− λi) = λ3 − s1λ2 + s2λ− s3, g = λ− µ

and is given by

u(x, t) = λ3 − λ1 − λ2 − 2(λ3 − λ2)sn2(
√
λ3 − λ1 (x− V t),m),

L =
1

2

∮
dµ√
−P (µ)

=
2K(m)√
λ3 − λ1

, V = −2
∑

λi, m =
λ3 − λ2
λ3 − λ1

.
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Whitham equations for KdV cnoidal wave
In Whitham modulation theory the parameters λi become slow
functions of x and t which change little in one wavelength L and
one period. Evolution of the parameters λi is governed by the
Whitham equations

∂λi
∂t

+ vi
∂λi
∂x

= 0 i = 1, 2, 3,

where vi(λ) are Whitham velocities

vi = −〈B/g〉
〈1/g〉

=
〈(4λi − 2u)/g〉
〈1/g〉

, i = 1, 2, 3.

and

vi =

(
1− L

∂iL
∂i

)
V, ∂i ≡

∂

∂λi
, i = 1, 2.3, V = −2

∑
λi.

Solutions λi = λi(x, t) of the Whitham equations substituted
into the cnoidal wave expression,
u = u(x, t;λ1(x, t), λ2(x, t), λ3(x, t)) describe the dispersive
shock.
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Dispersive KdV shock generated after wave breaking point
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Perturbed Whitham theory
(A.M. Kamchatnov, Physica D, 188, 247 (2004))

If we take into account the perturbation terms in the evolution
equations

um,t = Km(un, un,x, . . .)+Rm(x, t, un, un,x, . . .), m, n = 1, . . . , N,

then the parameters λi evolve not only because of modulation
of the wave, but also due to contribution of perturbation.

Example: perturbed KdV equation

ut = −6uux − uxxx +R(u, ux, uxx, . . .)

We have to calculate modification of conservation laws due to
disturbance.
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Perturbed Whitham theory

Example: perturbed KdV equation

ut = −6uux − uxxx +R(u, ux, uxx, . . .)

Conservation laws are modified to

∂g−n
∂t

=

l∑
k=0

∂g−n

∂u(k)
∂u(k)

∂t
=

l∑
k=0

∂g−n

∂u(k)
∂k

∂xk
ut

= [(B/g̃)−n]x +

l∑
k=0

∂g−n

∂u(k)
∂kR

∂xk
.

or (
1

g̃

)
t

−
(
B
g̃

)
x

=

∞∑
n=0

1

λn

(
δ̂

δu
g−n

)
R =

(
δ̂

δu

1

g̃

)
R.
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Dubrovin’s lemma (1975):

g̃ = 2λ
δ̂

δu

1

g̃
.

We get(√
P (λ)

λ1/2
· 1

g

)
t

−

(√
P (λ)

λ1/2
· 4λ− 2u

g

)
x

=
1

2λ

√
λ

P (λ)
· gR.

and the Whitham equations take the form

∂λi
∂t

+ vi
∂λi
∂x

= − 1∏
j 6=i(λi − λj)

· 〈gR〉
〈1/g〉

i = 1, 2, 3.



Shock wave Undular bore KdV dispersive shocks Whitham theory Perturbed Whitham theory Shallow-water BEC

Generalization to the AKNS scheme

We arrive at modified Whitham equations

∂λi
∂t

+ vi
∂λi
∂x

=
1∏

j 6=i(λi − λj)
· ±1

〈1/g〉

N∑
m=1

Am∑
l=0

〈 ∂A
∂u

(l)
m

∂lRm
∂xl

g
〉
,

where vi(λ) are usual Whitham velocities, the angle brackets
denote averaging over wavelength,

〈F〉 =
1

L

∫ L

0
Fdx

and everywhere λ is put equal to λi.
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Kaup-Boussinesq-Burgers equation
G.A. El, R.H.J. Grimshaw, AMK, Chaos, 15, 037102 (2005)
Two-directional shallow flow can be described by the
Kaup-Boussinesq system

ht + (hu)x + 1
4uxxx = 0,

ut + uux + hx = νuxx.

The unperturbed system (ν = 0) is completely integrable and
corresponds to

A =

(
λ− 1

2
u

)2

− h, B = −
(
λ+

1

2
u

)
.

Its periodic solution is parameterized by the zeroes of the
fourth-degree polynomial

P (λ) =

4∏
i=1

(λ− λi) = λ4 − s1λ3 + s2λ
2 − s3λ+ s4

λ1 ≤ λ2 ≤ λ3 ≤ λ4.
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The periodic solution has the form

u(x, t) = s1 − 2µ(θ), h(x, t) = 1
4s

2
1 − s2 − 2µ2(θ) + s1µ(θ),

where

µ(θ) =
λ2(λ3 − λ1)− λ1(λ3 − λ2)sn2

(√
(λ4 − λ2)(λ3 − λ1) θ,m

)
λ3 − λ1 − (λ3 − λ2)sn2

(√
(λ4 − λ2)(λ3 − λ1) θ,m

) .

m =
(λ3 − λ2)(λ4 − λ1)
(λ4 − λ2)(λ3 − λ1)

.

and θ = x− 1
2s1t.
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In a modulated wave and with account of friction the
parameters λi satisfy the Whitham equations

∂λi
∂t

+ vi
∂λi
∂x

= ρi, i = 1, 2, 3, 4.

where

vi =
s1
2
− L

2

(
∂L

∂λi

)−1
,

ρi =
1∏

j 6=i(λi − λj)
· 8ν

(∂L/∂λi)

∫ λ3

λ2

(µ− s1/4)
√
P (µ) dµ,

L =

∫ λ3

λ2

dµ√
P (µ)

=
2K(m)√

(λ4 − λ2)(λ3 − λ1)
.
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Steady solution of the Whitham equations

If we look for the solution of the Whitham equations in the form

λi = λi(θ), θ = x− ct, c = s1/2,

then we can reduce it to the system of ordinary differential
equations

dλi
dθ

=
Q∏

j 6=i(λi − λj)
,

where the factor

Q = −8ν

L

∫ λ3

λ2

(µ− s1/4)
√
P (µ) dµ

is the same for all i = 1, 2, 3, 4.
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Jacobi identities (Dissertatio 1825; Werke Bd. 3):
n∑
i=1

1∏
j 6=i(λi − λj)

= 0,

n∑
i=1

∑′
j λj∏

j 6=i(λi − λj)
= 0,

n∑
i=1

∑′
j,k λjλk∏

j 6=i(λi − λj)
= 0, . . .

n∑
i=1

1

λi
∏
j 6=i(λi − λj)

=
(−1)n−1

sn

where prime means that all terms with the factor λi are omitted
in the corresponding sum. The special structure of Whitham
equations provides three integrals s1, s2, s3,

ds1
dx

= 0,
ds2
dx

= 0,
ds3
dx

= 0.

Thus, in the steady solution only the last coefficient s4 varies
with θ = x− ct according to the equation

ds4
dθ

=
8ν

L

∫ λ3(s4)

λ2(s4)
(µ− s1/4)

√
P (µ) dµ,

which can be easily solved numerically for given constant
values of s1, s2, s3.
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Equation

P (λ) = λ4 − s1λ3 + s2λ
2 − s3λ+ s4 = 0

yields the zeroes λi as functions of s4 = s4(θ):
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Substitution of λi(θ) gives the oscillating structure of the
undular bore
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Polariton condensate

Polariton dynamics is described by the Gross-Pitaevskii
equation with account of pumping and dissipation

iψt + 1
2ψxx − |ψ|

2ψ = V (x)ψ + i(γ − Γ|ψ|2)ψ,

Periodic solution (ρ = |ψ|2)

ρ = 1
4(λ1 − λ2 − λ3 + λ4)

2 + (λ2 − λ1)(λ4 − λ3)

× sn2(
√

(λ4 − λ2)(λ3 − λ1) θ,m),

where
θ = x− Ut, U = 1

2(λ1 + λ2 + λ3 + λ4)
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Whitham equations

dλi
dx

=
2

L
· I1λi + I2∏

m6=i(λi − λm)
,

where

I1 = Γ

∫ ν2

ν1

ν(ρ0 − ν)√
R(ν)

dν, I2 =
Γu0ρ0

2

∫ ν2

ν1

ρ0 − ν√
R(ν)

dν,

and
R = (ν − ν1)(ν − ν2)(ν − ν3)
ν1 = 1

4(λ1 − λ2 − λ3 + λ4)
2,

ν2 = 1
4(λ1 − λ2 + λ3 − λ4)2,

ν3 = 1
4(λ1 + λ2 − λ3 − λ4)2,

The system has two integrals:

ds1
dx

= 0,
ds2
dx

= 0,
ds3
dx

=
2I1
L
,

ds4
dx

= −2I2
L
.
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Solution for the tail of the envelope

δν1, δν2 ∝ exp

(
Γρ0u0
u20 − ρ0

x

)
,
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Thank you for your attention!
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