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Hyperbolic Ginzburg-Landau equations are Euler—Lagrange equations for

(2 + 1)-DIMENSIONAL ABELIAN HIGGS MODEL

. . TO
This model is governed by the S(A, @) = / (T(A, ®) — U(A,®))di
0

Ginzburg—Landau action

on the space R with coordinates (1 = ¢, 11, 22).

The action S(A, ®) depends on variables A and ® where
A= Agdt + Ayde, + Asdry =2 AY + A is a 1-form on R with smooth

purely imaginary coefficients
AM:AM(t,iEl,SCQ), ,u:(),l,Z
O is the Higgs field, given by

a smooth complex-valued function d=d(t,x1,19) = D1 +1Py  on R'TZ

Physically, e A is vector-potential of electromagnetic field

e O is a scalar field, interacting with this electromagnetic field.
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1 1
Potential enerqy: U(A, @) = > / {]FA\Q + |da®)” + = (1 — \@2)2} dxy dxs,

where 2
Fy is the 2-form  Fy = dA = Z Fijdx; N\ dx;
ij=1
with coefficients  Fi; = 0;A; — 0; A;, 0; :=0/0x;, i,7=1,2
(where only two of them, i.e. Fij5 and Fy; = —F}5, do not vanish).
2
covariant derivative d P = dd + A D = Z(@Z + A;)® dx;.
i=1
e [, represents electromagnetic field and |F4]? is the Maxwell tensor;
_ e |d,D|* is responsible for the interaction of electromagnetic field
Physically,

with Higgs field ®;

e — (1 —|®]?)? reflects a non-linear character of ®.

=~ =

Note that potential energy depends only on space components of A so

U(A, @) = U(A, ®).



— " the existence
ondition — | of limit |®| — 1

U(A,®) < oo Infini
at space infinity

J

the map @: R? — C
sends circles Sg of suffi-
ciently large radius R
to topological circles

® has a topological
—> index called
vortex number.

Vorter number is equal to the algebraic sum of indices of zeros of ® inside Sp.

Kinetic energy: T(A,®) /{Q\Fm\ + 2| Foa|? + |d 40 ®|*} dxy dxs

where o F,,=0,4,—0,A,, 0, :=0/0x,, puv=012
o dspo® =dd+ Aydt.



Ginzburg—Landau equations are Euler—Lagrange equations for the action S(A, ®):

/

k=1
(91F01 + (92F02 — ’LIm((IDVA’Q(I))

2\

\

2
80F0j -+ Z €j]€a]€F12 = iIm(CI)VAJCD), j = 1, 2

1
(Vi&,o _ v,%x,l _ V?M)(I) — 5(1)(1 — @‘2)7

where VA,M — 6/JJ + AM? U= 0, 1, 2; €19 = —&91 = 1, €11 = €99 = 0.

Ginzburg-Landau equations, as well as the

action S(A, ®), are invariant under gauge transforms
A, — A, +10,x,

e e=012,

D — e XD,

where y is a smooth real-valued function on R**2,

Solutions of
Ginzburg-Landau

equations are called

dynamaic solutions.

We are interested in description of the moduli space of dynamic solutions,
equal to quotient of the space of solutions of Ginzburg-Landau equations

modulo gauge transforms.




STATIC SOLUTIONS — VORTICES

Static solutions of Ginzburg—Landau equations realize local minima of potential
energy U(A, ®).

Static solutions with vortex number N > 0 are called N-vortices and characterized
by the following theorem of Taubes.

2

Introduce complex coordinate z = x1 4+ 7x9 on the plane ]R{(ch 23)"

Theorem (Taubes). For any unordered collection z,...,zn of N points on C,
some of which may coincide, there exists a unique (up to static gauge transforms)
N-vortex solution (A, ®) such that ® vanishes precisely at points zi,...,zn with
prescribed multiplicities.

This Theorem implies that the moduli space of N-vortices, defined as

~ {N-vortices (A, @)}
N7 {static gauge transforms}

may be identified with Nth symmetric power of the complex plane C:
M, = Sym”C,

i.e. the space of unordered collections of N points on C.

Sym”™ C may be identified with C by associating with collection (2, ..., zy) the
monic polynomial, having zeros at these points with given multiplicities.




ADIABATIC LIMIT

For an appropriate choice of gauge function y we can always achieve the condition

Ay = 0.

Such a choice of y is called the temporal gauge. (Note that, after imposing this
condition on y, we still have gauge freedom with respect to static gauge transforms,
given by gauge functions y, depending only on space variables x, x3).

In temporal gauge a dynamic solution
of Ginzburg-Landau equations can be Mn
considered as a trajectory of the form

vt [A(t), (1)) '

where [A, ®| denotes the gauge class
of (A, ®) with respect to static gauge
transforms.

This trajectory lies in configuration space

N {(A,®) with U(A, ®) < oo and vortex number N}
N = ,

{static gauge transforms}

containing, in particular, the moduli space of N-vortices M y.



Consider a sequence of dynamic solutions ., depending on € > 0, given by
trajectories

Ye: t— [A(t), D(1)].

Suppose that their kinetic energy

T = [ T~

tends to zero proportionally to € when € — 0.

Then in the limit € — 0 trajectory . converts into a static solution, i.e. a point
of My. However, if we introduce a “slow time” parameter 7 = ¢/ on . and consider
the limit of “rescaled” trajectories v.(7) for € — 0 then in the limit we obtain
a trajectory 7o, lying in My, rather than a point.

Such a limit is called adiabatic and vy is called adiabatic trajectory:

Vo = adiabatic limit of . for ¢ — 0.



Adiabatic trajectories admit the following intrinsic description in terms of M y.

Theorem. Kinetic energy functional determines a Riemannian metric (T-metric)
on My with geodesics given by the adiabatic trajectories 7.

Note that every point of an adiabatic trajectory -~y is a static solution so 7, as
a whole cannot be a dynamic solution. However, one can think of this trajectory
as describing approximately some dynamic solution with small kinetic energy.

The idea of approximate decription of “slow” dynamic solutions in terms of the
moduli space of static solutions is due to Manton. Since we know very little about
the structure of moduli space of dynamic solutions, this approach looks rather per-

spective.

Manton has also proposed the following heuristic adiabatic principle:

for any adiabatic trajectory vy on the moduli space of N-vortices My
it should exist a sequence {v.} of dynamic solutions, tending to
in adiabatic limit.

The main goal of my talk is to explain mathematical meaning of this principle.




TANGENT STRUCTURE OF My

We study first in more detail the tangent structure of moduli space of N-vortices M y.

It was shown by Taubes that vortices are solutions (with finite energy) of the
following vortex equations

2
(x1,22)?

5.%—0 « 1s the Hodge operator on R
1D =

1 where 3. — A 0,1 : : :
iFy = %= (1 — \@\2) 0s:=0,+ A Where A is written in
2 complex coordinate: A = AW + A%

Second vortex equation may be also rewritten as: [, = — (1 — |[®]?).

DN | —

Tangent space to My at a point, corresponding to N-vortex (A, ®), is spanned
by solutions of linearized vortex equations:

a is a 1-form with smooth purely
Oap + a’t® =0 imaginary coefficients,
. = where
xi da + Re(p®) =0

© is a smooth complex-valued

function on R2.
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Solutions of linearized vortex equations are considered up to infinitesimal gauge

transforms:
(a,p) — (a +idy, p —iPX)

where y is a smooth real-valued function on R2.

The left-hand sides of linearized vortex equations determine the linearized vortex

operator B B
Diaay(a, o) = (0ap + a”'®, *ida + Re(pD)).

In its terms the tangent space to My at a given point (A, @) is written in the

form
{(a,¢): Dagy(a, @) = 0}

Taay My = '
(A,®)/¥EN {infinitesimal gauge transforms}

One can get rid of factorization modulo infinitesimal gauge transforms by gauge
fixing. We use for that the operator 0%, adjoint to gauge operator

dp: X — (a+idy, p —iPy).
In other words, we fix the infitesimal gauge by imposing the following condition

0p(a, o) = 0.
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MAIN THEOREM

Theorem (Palvelev). Suppose that a trajectory
Yo = [Ao, @o]: [0, 70] — My

s a geodesic on My with respect to kinetic T-metric, provided with the natural parame-
ter 7. Then there exists its pull-back
(Ag, ®o): [0, 79] — {N-vortices}

to the space of N-vortices, given by a smooth trajectory (Ag, o), and positive constants
T < Ty, €9, M such that for any € < €y there exists a dynamic solution (A€, ®¢) of
Ginzburg—Landau equations on interval |0, /€|, having the form

( Ag = EBCL(),

A(t) = Ag(et) + €a(t)
| ©°(t) = Po(et) + (1)
and satisfying the estimate

max {|ao(t) || s, [|a(t)][ms, ()| may < M

Alet) + e*a(t),
P(et) + (1),

N\

for any t € 0,7 /€.

The norm || - ||gs denotes the Sobolev H*-norm on RZ.
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AUXILIARY SYSTEM

Plugging the above Ansatz into Ginzburg-Landau equations, we obtain the
following system of equations

1
—ACZQ + |(I)’ apg — 2 ( Tw) + — at(&fﬂ?) T 2(8 P, - Y1 — a7‘(1)1 ’ 902) o,
82 + Dy gy Dinsant = —%0 + -

where ¢ = (a,¢) and “--- 7 denote the terms, proportional to e.

Due to gauge invariance, operator D 4 ¢) has infinite-dimensional kernel. In order
to avoid infinite-dimensional degeneration, we replace this operator by a perturbed

operator .
Diaoy = Dae) © 0y,

containing the adjoint gauge operator.

To get rid of terms, proportional to 1/¢* and 1/¢ in the right-hand side of the first
equation, we fix the gauge by imposing the condition 051 = 0.
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So we replace the original system by the following auxiliary system

—Ado + |<I>\2a0 = 2(87-(1)2 Q1 — (97-(131 . 902) -+ .- ,
O+ Dy ) Diaayt) = — P+

which has already only finite-dimensional degeneration.

This replacement of the original system by the auxiliary one is justified by the

following

Theorem. Any solution of the auziliary system, satisfying initial gauge

fizing condition
20 =0, 0039=0 fort=ty,

satisfies also the original system.

Thus, the existence problem for the original system is reduced to the existence

problem for the covariant Cauchy problem for auxiliary system.
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SOLVING THE AUXILIARY SYSTEM

To solve the existence problem for auxiliary system, we shall make use of the

following two results where we adopt a notation: dy := (ag, Oyag), ¢ := (¥, 0.1)).

Theorem (local existence theorem). For any sufficiently small € > 0
and arbitrary initial conditions

P(to) =9°
there exists an interval [ty,to + do| and solution of auziliary system on
this interval, satisfying the estimate:

max{nao(t)u, ||z;(t>||} < Bi|[b0| + By for any t € [to, to + o).

A key role in the proof of main Theorem is played by the following

Theorem (long-time apriori estimate). Suppose that (ag, ) is a solution

of our system on interval [0, Ty] with zero initial condition: ¥(0) = 0.
Assume that this solution satisfies the estimate

max { ||ao(®)|l, 16()]| } < M for any t € [0, Ty).
Then for any € < 1/M and all t € |0,Tp] the following estimate is true

(8] < C1 + etCo
where C; = const > 0, Cy = C1(1+ M*).




STRATEGY OF CONSTRUCTING A SOLUTION OF AUXILIARY SYSTEM

Existence of a solution is proved by successive usage of local existence theorem

and long-time apriori estimate.

First we choose constants M and 7; from main Theorem so that M satisfies the
inequality
M > B;C; + Bs,

and 7, satisfies the equation

BiCy (14 7(1+ M*)) 4+ By = M.

We have to show that for any sufficiently small € > 0 there exists a solution of

our system on interval [0, 7, /€.

16



Step 1. Using local existence theo-
rem, we find first a solution of our
system with zero initial condition on
a small interval |0, dg]. This solution

satisfies the estimate

wax {[|do(t)]], |4 (¢

for any t € [0, o]
(since M > Bj).

Iy <M

If 69 > 71/¢ then the process is
over. If not then, according to apri-

ori estimate, we have the inequality
H@E( )| < Cr + etCs

for any t € [0, do].

Step 2. Using local existence theo-
rem, we find next a solution of our

system on interval [dg, 20¢] with ini-
tial condition ¢ = /().

For this initial condition, accord-

ing to Step 1, we have the estimate
190 < C1 + €80Cy < Cy + 11Co.

Hence, by local existence theorem,

this solution satisfies the estimate
max{ [|do(t)|], |1 (t)]| } <
< 31”77;(50)" + Bs

< BlCl -+ TlBng + BQ =M

(in last inequality we have used the

definition of 71).
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Step 3. Consider now the combined solution
of our system on interval |0, 2dy] with zero ini-
tial condition, composed of solutions on inter-
vals [0, dg] and [dg, 200, constructed before. (Of
course, one have to check that this combined

solution does satisty our system on the whole
interval [0, 2dp].)

According to Steps 1 and 2, this solution sa-

tisfies the estimate

max{ || o (1)], (1)} <
for any t € [O, 20g].

If 20y > 71 /¢ then the process is over. If not

then, according to apriori estimate, we have:

[0(t)]| < Cy + etC,

for any t € |0, 2.

Step 4. We find now a solution
of our system on the next inter-
val |26, 3dg] with initial condition
W9 = 15(26y) and apply to this so-
lution the argument from Steps 2
and 3.

This process can be repeated
until at some kth step we get the
At this

step the process is over, as well

inequality ko, > 71/e.

as the proof of main Theorem.
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