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Universal G-spaces in the sense of R. Palais
S. Ageev

Belarus State University, Dept. of Mechanics and Mathematics,
Independence Av., 4, Minsk, 220050, Belarus

ageev@bsu.by

We present the survey of the theory of universal G-spaces in the sense
of R. Palais

On non-immersibility of RP! to RY
P.Akhmet’ev, O.Frolkina

IZMIRAN, 142190, Troitsk, Moscow region, Russia (P.Akhmet’ev), and
M.V. Lomonosov Moscow State University, Dept. of Mechanics and
Mathematics, Chair of General Topology and Geometry, 119991, Moscow,
Russia (O.Frolkina)!

pmakhmet@izmiran.ru (P.Akhmet’ev), odfrolki@mail.ru
(0.Frolkina)

B.J. Sanderson noted that for k& < n the projective space RP* is im-
mersible in R” if and only if the tangent bundle TRP" admits k linearly
independent vector fields over RP* [1, Lemma (9.7)]. Using this remark,
P.F. Baum and W. Browder proved that RP!Y can not be immersed to
R [1, Corollary (9.9)] by showing that the tangent bundle TRPY does
not admit 9 linearly independent vector fields over RPY [1, Thm. (9.5)].
We present a new proof of this last statement based on U. Koschorke’
singularity approach [2].

References

[1] P.F.Baum, W.Browder. The cohomology of quotients of classical
groups // Topology 3 (1965), 305-336.

[2] U.Koschorke. Vector Fields and Other Vector Bundle Morphisms -

A Singularity Approach. Lecture Notes in Math. 847 (Springer, Berlin,
1981).

'Both authors supported by Russian Foundation of Basic Research Grant No. 11-01-00822.
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Classification of low complexity knots in the
thickened torus

A. Akimova, S. Matveev

South Ural State University, 76 Lenina Str., Chelyabinsk, 454080, Russia,
Chelyabinsk State University, 129 Kashirin Brothers Str., Chelyabinsk,
454001, Russia

akimova_susu@mail.ru, matveev@csu.ru

We compose the table of knots in the thickened torus 71" x I which have
diagrams with < 4 crossing points. The knots are constructed by a three-
step enumeration. First we enumerate regular graphs of degree 4, then for
each graph we enumerate all corresponding knot projection, and after that
we construct the corresponding minimal diagrams. Several known and new
tricks made possible to keep the process within reasonable limits and offer
a rigorous theoretical proof of the completeness of the table. For proving
that all knots are different we use a generalized version of the Kauffman
polynomial.

Cutting the same fraction of several measures
A.V. Akopyan (joint work with R.N. Karasev)

Institute for Information Transmission Problems RAS, Bolshoy Karetny
per. 19, Moscow, Russia 127994
and B.N. Delone International Laboratory “Discrete and Computational
Geometry”, Yaroslavl’ State University, Sovetskaya st. 14, Yaroslavl’,
Russia 150000

akopjan@gmail.com

The famous “ham sandwich” theorem of Stone, Tukey, and Steinhaus
asserts that every d absolutely continuous probability measures in R? can
be simultaneously partitioned into equal parts by a single hyperplane.

M. Kano and S. Bereg raised the following question (in the planar case):
If we are given d+1 measures in R? and want to cut the same (but unknown)
fraction of every measure by a hyperplane then what assumptions on the
measures allow us to do so? Certainly, additional assumptions are required
because if the measures are concentrated near vertices of a d-simplex then
such a fraction cut is impossible. A sufficient assumption is described
below:

Definition. Let ug, w1, ..., ug be absolutely continuous probability
measures on R? and let ¢ € (0,1/2). Call the set of measures e-not-
permuted if for any halfspace H the inequalities p;(H) < ¢ for all ¢ =
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0,1,...,d imply
pi(H) > p;(H), for some i < j.
Theorem. Suppose g, 1, - .., g are absolutely continuous probability

e-not-permuted measures in RY for some e € (0,1/2). Then there exists a
halfspace H such that

o(H) = pn(H) = - = pa(H) € [£,1/2].

We also consider a problem of cutting the same prescribed fraction of
every measure, this time allowing cutting with a convex subset of R?.
Theorem. Suppose g, i1, - .., pq are absolutely continuous probability

measures on R? and o € (0,1). It is always possible to find a convex subset
C C R? such that

1o(C) = m(C) =+ = pa(C) = a,

if and only if o = 1/m for a positive integer m.

On simply-paracompact space
Al-Bayati Jalal Hatem

Peoples friendship university of Russia, Dept. of Higher Mathematics,
Miklukho-Maklaya str., Moscow, 117198, Russia

jalalintuch@yahoo.com

We introduce the class of simply-paracompact spaces as a generalization
of paracompact spaces. A space X is called simply-paracompact if every
open cover of X has a locally finite simply-open refinement. We charac-
terize simply-paracompact spaces and study their basic properties. The
relationships between simply-paracompact spaces and other well-known
spaces are investigated.



The Schlesinger system and isomonodromic
deformations of bundles with connections on
Riemann sufraces

D.V. Artamonov
Moscow State University
artamonov.dmitri@gmail.com

Take a Riemann sphere a consider a fuchsian system on it:

where A; are some k x k matrices, a;, ¢ = 1,...,n are point on the
Riemann sphere and y = (y1, ..., y)" - the column vector of unknowns.

We are changing a;’s in such a way that the monodromy is preserved.
Then the sufficient and typically necessary for this is the Schlesinger sys-
tem.

This system possesses numerous good properties. It is hamiltonian
(there are explicit formulas for the hamiltonians), it possesses the Painleve
property. If we take as a space of parameters not the set {(ay, ..., a,), a; €
C, a; # a;j}, but it’s universal covering, we can prove the following: a set of
parameters in which we cannot continue the deformation is a set of zeroes
of some function 7, which is holomorphic on the hole space of parameters.
Moreover, there exists an explicit formulae for dint (The Miwa formu-
lae). From this formulae we can see, that 7 turns out to be the generating
functions for the hamiltonians.

In the case of a Riemann surface of higher genus it is natural to work
with bundles with connections instead of equations. It is natural to take
as the parameters of deformations the positions of singularities and the
complex structure with a fixed bases in the fundamental group (i.e. a
point in the Teichmuller space).

The main result of the talk is a natural description of isomonodromic
deformations of bundles.

It turns out that one can describe such deformations by the same Schle-
singer system as in the case of genus 0 plus some system of linear equa-
tions.
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A counterexample to the Lando conjecture on
intersection of spheres in 3-space

S. Avvakumov

Independent University of Moscow, 119002, Bolshoy Vlasyevskiy Pereulok
11, Moscow

s.avvakumov@gmail.com

Let M and N be two sets of the same number of disjoint circles in
a sphere. Do there exist two polyhedral two-dimensional spheres in R?
such that their intersection is M in one of them and A in the other?
S. Lando conjectured that the answer is "yes* for each M and N. We
shall give a counterexample to this conjecture. We shall also prove the
following necessary and sufficient condition on M and N for existing of
such intersecting spheres.

Suppose there are two unions of disjoint circles in a sphere. We shall
say that they are comparable (in this sphere) if any path connecting two
points of one union intersects the other union in an even number of points.

Suppose M is a union of disjoint circles in a sphere S. Clearly, closures
of the connected components of S — .M can be colored in two colors so that
any two same colored components are not adjacent.

Theorem 1 Let M and N be two unions of disjoint circles in a sphere S.
Let h : N — M be a homeomorphism. Then there exist homeomorphisms
f,g:S — R3 such that g|yr = foh and f(S)Ng(S) = fF(M) = g(N) iff
h(0A) and h(OB) are comparable for any same colored closures of connected
components A and B of S — N .

Algebraic properties of spherical nerve-complexes
A.A. Ayzenberg
Moscow State University, Dept. of Mechanics and Mathematics, Moscow,
Russia
ayzenberga@gmail.com

Consider a convex polytope P. Its facets cover its boundary and the
nerve of this cover is denoted Kp. For a simple polytope P the complex
K p coincides with the boundary dP* of a polar dual polytope. In this case
Kp is a simplicial sphere and its Stanley-Reisner ring k[Kp] is known to
be Cohen—Macaulay. The global problem is to describe the properties of
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a simplicial complex Kp and its Stanley—Reisner ring for general convex
polytope P. Topological properties of Kp are put together in the definition
of a spherical nerve-complex. In the talk a connection between the topology
of a simplicial complex K and the depth of the ring k[K]| will be shown.
This connection yields the central result of the work:

depthk[Kp| = dim P
for each convex polytope P.

References
1. A.A.Ayzenberg, V.M.Buchstaber, Moment-angle spaces and nerve-
complexes of convex polytopes, Proceedings of the Steklov Institute of Mathe-
matics, V.275, 2011.
2. G. Reisner, Cohen-Macaulay quotients of polynomial rings, Advances
in math. 1976. V.21, N.1. P.30-49.

The work was partially supported by RFBR grants 11-01-00694 and 12-
01-92104.

On points of compactifications of discrete spaces
E. Bastrykov

Udmurt State University, Dept. of Mathematics, 1 Universitetskaya Str.,
Izhevsk, 426063, Russia

bastrykov@gmx.com

We consider the compactification BN of a countable discrete space N,
constructed as Stone space of one Boolean algebra of V.

We prove the existing of three classes of points in remainder of this
space: u-, £- and £ )/-points, prove that this classes are disjunct and that
in BN \ N there are points which are not u-, £~ or £;,-points. We also
get a characteristics of points from specified classes in terms of centered
systems of sets and prove some properties of closures of countable sets of
this points.
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The weakly density of superextension
R.B. Beshimov, M.N. Mamadaliyev

National University of Uzbekistan named after M.Ulugbek, Uzbekistan,
700174, Tashkent, VUZ Gorodok

rbeshimov@mail.ru, nodir_88@bk.ru

In the paper, cardinal properties of superextensions are investigated.

Let X be a topological space and A\X its superextension [1].

Definition 1 [2]. The MLS £ € A\X is called thin (TMLS) if it contains
at least one finite element. We denote by A*X the set of all TMLS of the
space X

Definition 2. The MLS ¢ € AX is called compact (CMLS) if it contains
at least one compact element.We denote by A. the set of all CMLS of X.

Example. There exists a MLS containing compact element such that
it doesn’t contain any finite element. Let R be the real line with the
natural topology. If we consider following closed sets: Fy = [0,1], Fy =
{3} U[2,400), ..., Fr = {3} U [k, +00), ..., it is clear that the system
p = {F,Fy, ... Fy, ..} is linked. We'll fill it up to MLS £. It is easy to
check that the system & doesn’t contain any finite element.

Theorem 1. We have

Drw(AX) = mw(X);

Nmx(X) < mx(AX);

3) If an infinite cardinal number 7 is a caliber of a space X then 7 is a
caliber for \.X;

4) If X is an infinite Tychonoff space then

wd(X) = wd(N'X) = wd(A\.X) = wd(AX)

REFERENCES

[1] Fedorchuk V.V., Filippov V.V. General topology. Basic construc-
tions. Moscow: Phys.math.lit. 2006. 332 p

[2] Mahmud T. Cardinal valued invariants of the space of linked sys-
tems. Ph.D. thesis of physical and mathematical sciences- Moscow State
University, 1993. -83 p.
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Combinatorial types of polyhedra and Rakov
conjecture

A. Bogatyy, 1. Bogatyy

Moscow State University, Dept. of Mathematics, GSP-1, 1 Leninskiye
Gory, Main Building, Moscow, 119991, Russia

bogatyi@gmail.com

One of the most important problems in studying combinatorial types
of polyhedra is the enumeration of all convex polyhedra with a particular
configuration of faces. By Steinitz’s theorem it is equivalent to the enumer-
ation of planar 3-connected graphs. Checking a graph for planarity and
3-connectivity is a relatively simple task, but checking for isomorphism is
notoriously hard, which motivates to develop an algorithm to efficiently
check planar 3-connected graphs for isomorphism.

In 2005, Rakov stated a conjecture that two 3-connected planar graphs
are isomorphic iff. they have the same number of vertices of each degree
and also the same number of spanning trees. Using Maple, he checked his
conjecture for N < 8.

This work’s aim is programming directly the algorithms above (using
Java) and checking the conjecture for greater N. More specifically, we cal-
culate the number of 3-connected planar graphs with different Rakov invari-
ants, and compare that to the number of all non-isomorphic 3-connected
planar graphs (which was computed in Engel’s work for N < 12). The
first number is less or equal to the second, and if it’s less - the conjecture
is refuted.

The result of this work is the refutation of Rakov conjecture. Besides,
the counterexample was found with only 8 vertices, implying that there
was probably a mistake in Rakov’s work. First, the number of 3-connected
planar graphs with different Rakov invariants was computed. FEven at
N = 8, it was less than the number of non-isomorphic 3-connected planar
graphs. But a specific counterexample is always preferable, and it was
found applying divisibility considerations to one of the Rakov invariants
sets, and checking a suspicious set of graphs for isomorphism. This indeed
yielded a counterexample.
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Random polytopes with (0-1)-vertices
Vladimir Bondarenko

Laboratory of Discrete and Computational Geometry,
Yaroslavl State University,

Sovetskaya st. 14, Yaroslavl’, 150000, Russia
bond@bond.edu.yar.ru

Supported by the Russian government project 11.G34.31.0053.

Let M be the convex polytope, X = extM - the set of its vertices. Two
vertices x and y of X are called adjacent if the segment [z, y] is an edge of
the polytope M.

Polytope M is called a 2-neighborly, if its graph is complete, i.e. any
two vertices are adjacent.

We denote by P ,,, the probability that the convex hull of randomly
selected k points from {0,1}™ forms a 2-neighborly polytope. From the
results of [1, 2] implies the following theorem.

Theorem.

1. Let k = k(m) = a,,(3) 7, where a,, — 0, then Py, — 1.

2. Let k= k(m) > (2 +¢)?2, for some € > 0, then P, — 0.

References

[1] Bondarenko V. A. Polyhedral graphs and complexity in combinatorial
optimization (Yaroslavl, 1995) [in Russian].

2] Kaibel V., Remshagen A. On the graph-density of random 0/1-
polytopes. Lect. Notes Computer Sci. (2003) 2764, 318-328.

Nakajima’s quiver varieties and combinatorial
identities
A. Buryak
Moscow State University
buryaksh@mail.ru

In the talk I will explain how different combinatorial identities can be
proved using geometrical constructions in the theory of Nakajima’s quiver
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varieties. This identities include a quantum generalization of the Macma-
hon’s formula and infinite product expansions of certain generating func-
tions for statistics on Young diagrams.

The (dis)connectedness of products in the box
topology

V.Chatyrko

Department of Mathematics, Linkoping University, 581 83 Linkoping,
Sweden

vitja@mai.liu.se

This is a joint talk with A. Karassev.

It is well known that the product R of countably many copies of the
real line R, endowed with the box topology, is disconnected. Recall [W,
Theorem 1.3] that this result can be generalized as follows. Let X,,a € A,
be an infinite system of nondegenerated completely regular T}-spaces and
ng 4 X denote the product endowed with the box topology. Then the

space HZG 1 Xq 1s disconnected.

This study is motivated by the following question. Let X,,a € A,
be an infinite system of nondegenerated connected spaces. Under what
conditions on the system is the space Hie 4 Xo (dis)connected?

In view of the result above the question is meaningful for connected
spaces with axioms lower than T3%. In this talk we suggest two indepen-
dent sufficient conditions on topological connected spaces which imply dis-
connectedness, and one sufficient condition which implies connectedness,
of products of spaces endowed with the box topology. As an application of
that we show that the product K* of countably many copies of Khalimsky
line K, endowed with the box topology, is also disconnected. Moreover,
we describe the connected components of the product.

References

[W] S. W. Williams, Box products, in Handbook of Set-Theoretical Topol-
ogy, Edited by K. Kunen and J.E. Vaughan, Elsevier, 1984
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A classification of embeddings of non-simply
connected 4-manifolds in 7-space

D. Crowley, A. Skopenkov

Department of Mathematics, University of Bonn, Bonn, Germany.
Independent University of Moscow, B. Vlasyevskiy, 11, 119002, Moscow,
Russia

diarmuidc23@gmail.com, skopenko@mccme.ru

Let N be a closed connected orientable 4-manifold with torsion free
integral homology. The main result is a complete readily calculable classi-
fication of embeddings N — R, in the smooth and in the piecewise-linear
(PL) categories. Such a classification was earlier known only for simply-
connected N, in the PL case by Boéchat-Haefilger-Hudson 1970, in the
smooth case by the authors 2008 (arxiv:math/0808.1795). In particular,
for N = S! x 83 we define geometrically a 1-1 correspondence between the
set of PL isotopy classes of PL embeddings S! x S® — R" and the quotient
set of Z @ Zg up to equivalence (I,b) ~ (I,V) for b =V mod 2GC'D(3,1).
This particular case allows us to disprove the conjecture on the complete-
ness of the Multiple Haefliger-Wu invariant, as well as Melikhov informal
conjecture on the existence of a geometrically defined group structure on
the set of PL isotopy classes of PL embeddings in codimension 3. For
N = S' x S we identify the smooth isotopy classes of smooth embeddings
with an explicitly defined quotient of Z1o ® Z ¢ Z.

A link between Italian and Russian mathematical
schools: Arzela and Alexandroff convergences

Giuseppe Di Maio
Seconda Universita di Napoli, Caserta, Italy
giuseppe.dimaio@unina2.it

In 1883 Arzela solved the fundamental question of Real Analysis: what
precisely must be added to pointwise convergence of a sequence of contin-
uous functions to preserve continuity? He formulated a set of conditions
which are both necessary and sufficient (namely “convergenza a tratti”) for
the continuity of the pointwise limit of a sequence of real valued continuous
functions defined on a closed interval of the real line. This problem has
been dominant for the last century and an active area of research in Anal-
ysis and General Topology. In 1948 P.S. Alexandroff solved the problem
for a sequence of real valued continuous functions from a topological space
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X (not necessarily compact) to a metric space Y. Alexandroff’s idea is one
of the most important in the field.
We discuss relations between these two modes of convergence.

Local 7-density of exponential spaces
G.F. Djabbarov

Tashkent State Pedagogical University, Uzbekistan 100100, Tashkent,
Yusuf Khos Hojib str.103

gayrat_77@bk.ru

In the work it is shown that functors exp,, exp,, exrp. preserve local
T-density of any topological Ti-space.

Let X be a topological Ti-space. We denote by exrpX the set of all
nonempty closed subsets of the space X. The family B of all sets of the form
O(Ul,UQ, ,Un>:{F FeexrpX, F C UUZ, FNU; # @, 1=1,2, ...,n},
where Uy, Us, ..., U, is a sequence of open sets of the space X, generates a
topology on the set expX. This topology is called the Vietoris topology.
The set expX with the Vietoris topology is called the exponential space or
the hyperspace of X [1].

Let X be a topological Ti-space. We denote by exp,X the set of all
nonempty subsets of the space X containing no more than n elements, i.e.
exp, X = {F € expX : |F| < n}. We assume that exp,X = U{exp,X :
n=12,..,n,..}, exp.X = {F C expX : F — compact}.

Definition 1. Tj-space X is called local 7-dense if each point x € X
has a neighborhood Ox with the density 7.

If 7 = N - countable then the space X is locally separable.

Theorem 1. If a Tj-space X is locally 7-dense then so are spaces
exp, X, exp,X, exp.X.

References

[1]. Fedorguk V.V., Filippov V.V. General topology. Basic constructions.
Moscow: Physmathlit. 2006. — 332p.
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On generalizations of Fedorchuk’s Normal Functor
Theorem in category P

M.A. Dobrynina

Moscow State University, Mechanics and Mathematics Faculty,
Leninskiye Gory 1, Moscow, 119899, Russia

mary_dobr@mail.ru

A well-known Katétov theorem states, that the hereditary normality of
the cube of a compact space implies the metrizability of this space.

In 1989, the theorem was generalized by V.V. Fedorchuk:

Theorem 1. If a compact Hausdorff space F(X) is hereditary normal
for some normal functor F of degree > 3, then X is metrizable.

As T.F. Zhuraev showed in [3], the condition of the hereditary normality
of F(X) in theorem 1 can be replaced with the condition of the hereditary
normality of F(X )\ X. The Fedorchuk’s theorem, as well as Zhuraev’s, was
also generalized by A.P. Kombarov: the hereditary normality of F(X)\ X
was relaxed to the weaker requirement of the hereditary K-normality of
F(X)\ X.

All the above-mentioned results are true for normal functors acting in
category Comp. Therefore it seems natural to extend these results to
some wider classes of covariant functors: for instance, by considering the
category P of paracompact p—spaces, which are exactly the full perfect
preimages of metrizable spaces, and their perfect mappings.

In this connection we generalized the notion of a normal functor to the
category P and proved the following theorem, which generalizes theorem
1:

Theorem 2. Suppose that X is a paracompact p—space, F is a nor-
mal functor of degree > 3 acting in category P, and the space F(X) is
hereditarily normal. Then X 1s a metrizable space.

Furthermore, we obtained the generalization of Zhuraev’s result, which
also generalizes theorem 2:

Theorem 3. Suppose that X is a paracompact p—space, F 1s a normal
functor of degree > 3 acting in category P and the space F(X) \ X is
hereditarily normal. Then X s metrizable.

19



Some Generalizations of Transversal Theorems
Viadimir Dol’nikov

Yaroslavl State University, Dept. of Mathematics, Sovetskaya Str. 14,
150000, Yaroslavl, Russia

dolnikov@univ.uniyar.ac.ru

In my talk I shall concentrate on some recent ”colored” transversal
theorems.

Let P be a family of sets. By 7(P) denote the least positive integer
k such that there exists a set T of cardinality k& which has a nonempty
intersection with every V € P.

The following concepts is a generalization of H. Hadwiger — H. Debrun-
ner concept. Let p and ¢ are integers with p > ¢ > 2. We say that a
collection Py, P, ... P, of families of sets has (p, ¢)-property when the fol-
lowing condition holds: if for every 7, 1 < < p, we choose an arbitrary set
Vi € B, then it is possible to find ¢ sets among Vi, ...V, with a nonempty
intersection.

The following theorem is a generalization of Hadwiger — Debrunner the-
orem and, at the same time, a generalization of Barany — Lovasz theorem.
Theorem 1. If a collection P, P, ... P, of families of compact convex
sets in R? has (p,q)-property with d +1 < ¢ < p < %(q — 1), then
t(P;) <p—q+1for an index i, 1 <i < p.

Now we will give a result in direction of (p, ¢)-problem for special families
of convex sets.

Let V, W are compact convex sets in R?. We write V' < W if there exists
a compact convex set U such that W =V + U. A family P of compact
convex sets in R? is called monotone if for every V, W & P one of the
relations V < W or W < V holds.

Theorem 2. If a collection P, ... P, 1 of monotone families of compact
convex sets in R? has (m+1, 2)-property, then there exists i ,1 <i < m+1,
such that 7(F;) < a(d)m where a(d) depends only on d
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Pseudo-integrable billiards: an introduction
V. Dragovié¢
Mathematical Institute SANU, Belgrade, Serbia
GFM University of Lisbon

vladad®Omi.sanu.ac.rs

We introduce a class of nonconvex billiards with a boundary composed
of arcs of confocal conics. We present their basic dynamical, topological
and arithmetic properties. We study their periodic orbits and establish a
local Poncelet porism. This research is done jointly with M. Radnovi¢.

Integrable hierarchies of topological type from
dressing transformations

B.A. Dubrovin

SISSA, Trieste, Italy
and the Bogolyubov Laboratory, Moscow State University

dubrovin@sissa.it

We consider the class of hierarchies of integrable PDEs satisfying topo-
logical recursion coming from Deligne-Mumford moduli spaces of stable
algebraic curves. Many classical examples like Korteweg - de Vries, nonlin-
ear Schroedinger, Toda lattice equations belong to this class but there are
many new hierarchies depending on continuous parameters. We construct
a big family of such hierarchies with the help of the well known dressing
transformations and their quantization.

On matched diagrams of knots
S. Duzhin

Steklov Mathematical Institute, St.Ptersburg Division, Fontanka 27,
St.Petersburg, 191023, Russia

duzhin@pdmi.ras.ru

A matched diagram of a knot is a plane knot diagram whose crossings
can be matched into simplest pairs having the form of a braid on two srings
with one full twist. The problem raised by Jozef Przytycki in 1987 was to
find a knot which does not have a matched diagram. In this talk, based
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on a joint work with M.Shkolnikov (see arxiv:1105.1264), we will explain
why, for example, the pretzel knot P;3 _3 cannot be drawn by a matched
diagram. The proof relies on the construction of a special Seifert surface
of the knot from its matched diagram, then writing out the Seifert matrix
for a cleverly chosen basis o cycles and, finally, arriving at an Alexander
matrix whose elements are polynomials in the combination t 4+ t~!. It
follows that the second Alexander ideal of such a knot is an ideal of the
ring Z[t,t7!] that can be generated by a set of polynomials in the variable
t + t~'. However, it is known that the second ideal of the knot Pys 3 is
(3,t+ 1), and it is readily seen that this ideal does not allow for a set of
generating polynomials in ¢ + ¢! only.

The signature and its generalizations for open
manifolds

J. Eichhorn
Greifswald University

For a closed oriented 4k-manifold M there are 4 standard definitions of
the signature,

1) the signature of the combinatorial intersection form,

2) the signature of the analytical intersection form,

3) the index of the signature operator,

4) the integrated L-polynomial.

All these 4 numbers coincide.

If M is open, of bounded geometry with a uniform triangulation, then
these numbers are not defined in general and if they are defined, they do
not coincide. We give simple examples for this.

We extend in special cases the definitions above to open manifolds,
exhibit their relations, the geometrical meaning, applications to bordism
theory and give — following Higson and Roe — much more general definitions
of the signature with values in certain K-groups for C*-algebras which are
defined for geometric Hilbert Poincaré complexes.
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Ring of flag vectors of convex polytopes
Nickolai Erokhovets

Lomonosov Moscow State University, Faculty of Mechanics and
Mathematics,1 Leninskie Gory, Moscow, 119991, GSP-1, Russia

erochovetsn@hotmail.com

The famous g-theorem gives necessary and sufficient condition for a
vector (fo, ..., fu) € Z" to be the face-vector of an n-dimensional simple
convex polytope. The analogous problem for flag numbers of convex poly-
topes is one of the most striking problems in the polytope theory and is
opened even in dimension 4. The ring of convex polytopes with the algebra
of face operators on it invented by Victor Buchstaber gives a new effective
approach to the problem of flag vectors. The free abelian group B gener-
ated by combinatorial convex polytopes with the multiplication given by
the direct product is called a ring of convex polytopes. We can define the
flag number of integer combination of polytopes by linearity. There is a
graded ring § = B/ ~, where P ~ @ if and only if P and @) have equal flag
numbers and the grading is induced by doubled dimension of polytopes.
This ring is called a ring of flag vectors.

Theorem 1. The ring § can be realized as a graded subring in the
ring Qsym|a], dega = 2, of polynomials over the ring of quasi-symmetric
functions.

Theorem 2. The ring § ® Q is a graded ring of polynomials with
dim(F ® Q)*" equal to the n-th Fibonacci number (¢ = ¢; = 1, cpy1 =
¢n+cn_1). This gives the expansion of the generating function of Fibonacci
numbers .—— = >, ¢,t" into the infinite product [];7, W, where
k, is the number of multiplicative generators of § ® Q in dimension 2n.
We have: k| = ko = 1.

Using the fact that Qsym ® Q is a graded ring of polynomials in the set
of multiplicative generators indexed by the Lyndon words, we obtain:

Corollary. We have: k,, n > 2, is equal to the number of Lyndon
words of degree n consisting of odd numbers. We give the conditions
on flag numbers of k, elements in F>" to be the set of 2n-dimensional
multiplicative generators.

J.Fine suggested the construction that associates to a convex polytope
P a cd-index — the non-commutative polynomial in two variables ¢ and d,
which captures all the information on the flag vector of P. It was shown by
R.Stanley that the coefficients of the ed-index are nonnegative. Consider
the operators € = 2pyr — bipyr and D = pyr o bipyr — bipyr o pyr, where
pyr(P) is the pyramid and bipyr(P) is the bipyramid over P.
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Theorem 3. The images of the elements W(pt), where W is a word in
C and D and pt is a point, under the natural projection 7: P — §F form a
basis in § and the representation of 7w(P) in this basis coincides with the
cd-index.

The talk is based on the joint work: V.M.Buchstaber, N.Yu.Erokhovets,
Polytopes, Fibonacci numbers, Hopf algebras, and quasi-symmetric func-
tions, Russian Math. Surveys, 66:2 (2011), 271-367.

Homotopy bundle gerbes and higher twisted
K-theory

A.V. Ershov

Saratov State University, Dept. of Mechanics and Mathematics, 83
Astrakhanskaya Str., Saratov, 410012, Russia

ershov.andrei@gmail.com

It is well-known that twistings in complex K-theory over a compact
space X are classified by homotopy classes of maps X — B(Z/2Zx BUs,) ~
K(Z/27,1) x K(Z,3) x BBSUg. The twisted K-theory corresponding to
“abelian” twistings from HY(X,Z/27) x H3(X,Z) has been intensively
studied during the last decade while higher twistings from [X, BBSUg)|
have not attracted much attention partly because there is no known ap-
propriate geometric model for them. In my talk I shall discuss an approach
for higher twistings of finite order based on the monoid of endomorphisms
of the direct limit of complex matrix algebras. I shall also discuss a homo-
topy coherent version of bundle gerbes which combines the idea of a bundle
gerbe with Wirth-Stasheft’s local description of fibre bundles with struc-
ture monoid by homotopy transition cocycles. (Joint work with Thomas
Schick.)

Cascade search of singularities of mappings between
metric spaces

Tatiana N. Fomenko

Moscow State University, Dept. of Computational Mathematics and
Cybernetics, Leninskie Gory, Moscow, 119991, Russia

tn-fomenko@yandex.ru

The subject matter of the talk concerns the search of such singularities of
(collections of) mappings between metric spaces as: zeros of nonnegative
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real functionals, common fixed points, coincidence point, common roots
etc.

The cascade search methods were proposed and studied in [1] and other
author’s papers. A multicascade on a metric space X is a multivalued
discrete dynamic system on X, that is an action on X of the semigroup
(Z>0,+). The action of 1 € Z> is a set-valued mapping called a generator
of the multicascade. A non-negative set-valued real functional ¢ is called
(e, B)-search on X, 0 < B < a, if Vo € X, 32’ € X such that p(z,2') <

Q*T(x), we(2) < g - .(z). Here ¢, (x) stands for inf{yly € ¢(x)}. With the
help of a given search functional ¢, the cascade search principle enables one
to construct so called search multicascade on X which limit set is Nil(p) =
{z € X|0 € p(x)}. Essential generalizations of several known results were
obtained as consequences of that principle and stability problems were also
considered.

In this talk we present new versions of the cascade search principle using
the more wide class of functionals than the search ones. The other new
development concerns local versions of cascade search methods which allow
one to realize a cascade search locally, within a given neighbourhood of the
starting point. Some applications of the mentioned new results to the
cascade search of singularities of finite collections of set-valued mappings
between metric spaces will be presented as well.
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Exact values of complexity for some infinite series of
hyperbolic manifolds with boundary
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Exact values of complexity are known only for few infinite series of
3-manifold. We present results on complexity for two infinite series of
hyperbolic 3-manifolds with boundary. The first is a family of Paoluzzi
— Zimmermann manifolds from [1], and the second is a family of their
generalizations.

For every n > 3 consider an n-gonal bipyramid which is the union of
pyramids NLgLy...L, 1 and SLoL;...L, 1 along the common n-gonal
base LoLy...L, 1. Let k be such integer that 0 < £ < n. The first fam-
ily corresponds to the case ged(n,2 — k) = 1, and the second — to the
case ged(n,2 — k) = 2. We identify the faces of B, in pairs: for each
t=20,...,n—1 the face L;L; 1N gets identified with the face SL; pL; 11
by a homeomorphism of faces (indices are taken mod n and the vertices
are glued together in the order in which they are written). Identifications
define the equivalence relations on the sets of faces, edges, and vertices of
the bipyramid. It is easy to see that all the faces are split into pairs equiva-
lent faces, all edges and all vertices become identified to a single edge resp.
vertex (this is guaranteed by the above conditions on k). Denote the result-
ing identification spaces by M ,. It is an orientable pseudomanifold with
one singular point. Cutting of a cone neighborhood of the singular point
from My we get a compact manitold M, ; with one boundary component.

Denote by ¢(M,, i) the Matveev’s complexity of M, ; which is defined
as the minimum possible number of true vertices of an almost simple spine
of Mn,k-

Theorem 1 [2, 3] Suppose that ged(n,2 — k) = 1 or ged(n,2 — k) = 2.
Then for every integer n > 4 we have c¢(M, 1) = n.
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Belt diameter of some class of space filling zonotopes
A. Garber
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In this talk we will discuss one combinatorial property of convex poly-
topes with centrally symmetric facets. For this class of polytopes we can
define a notion of belt. For given d-dimensional polytope P and its face F
of codimension 2 a belt Bp(F') is the set of all facets of P that are parallel
to I'. Belt diameter of P is the diameter of graph with vertices correspon-
dent to pairs of opposite facets of P and edges connecting two vertices if
and only if corresponding pairs of facets are in one belt. In other words,
if we consider a surface of P as a city with facets as subway stations, and
all belts as subway routes then belt diameter is the maximal number of
route changes that we need to do in order to travel from any station to any
other.

During this talk we will give a way how to obtain upper bounds for belt
diameters of space-filling zonotopes. Also we give exact bounds for special
case of zonotopes obtained from permutahedron by contraction of zone
vectors. Namely we will point ideas of proofs of the following theorems.

Theorem. Belt diameter of d-dimensional space filling zonotope is not
greater than |log, 3d].

Theorem. If 7 is a d-dimensional zonotope obtained from permutahedron
by contraction of zone vectors then belt diameter of Z is not greater than
3 for d > 8 and not greater than 2 for smaller dimension. These bounds
are sharp.

Why upper bounds for belt diameters are interesting and why we re-
strict to the case of space filling polytopes? One of the conjectures in the
parallelohedra theory that deals with space filling polytopes is the Voronoi
conjecture. The Voronoi conjecture claims that every parallelohedron, i.e.
convex poltyope that tile Euclidean space with translations, is affine image
of Dirichlet-Voronoi polytope for some lattice. One of the way to prove it
for a single parallelohedron or for a family of parallelohedra is to construct
an explicit affine transformation using belts of parallelohedra.

This research is supported by the Russian Government project
11.G34.31.0053, RFBR projects 11-01-00633 and 11-01-00735.
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Local liftability of tilings
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An old enough problem is to determine whether a given convex tiling
C? of R? is a projection of some convex polyhedron P in R4 (C. Davis,
F. Aurenhammer, P. McMullen). There is a number of useful and handy
criteria of being such projection. Most of the criteria deal with global
structure while usually we can construct just local objects (expecting them
to join together later). We provide a new local criterion which could be of
use in cases when we know just local structure well. This criterion connects
(a bit unexpectedly) the topic with a topic of polytopal fans.

Tietze-Gleason theorem for binary G-spaces
P.S. Gevorgyan

Academy of labor and social relations, Dept. of Higher and Applied

Mathematics, 90 Lobachevskogo Str., Moscow, 119454, Russia,

Moscow power engineering institute (‘Technical University), Dept. of
Higher Mathematics, Krasnokazarmennaya 17, Moscow, 111250, Russia

pgev@yandex.ru

Let X be a topological space and let G be an arbitrary topological
group.
Definition 1. A binary action of G on X is a continuous map « :
G x X? — X such that
&(gh7x17$2) = Oé(g, Iy, Oé(h,xl, :52))7
&(eaxlu 1'2) = Z2.

for all g,h € G and z1,29 € X.
By a binary G-space we mean a topological space X together with a
binary action of G on X.

There is a natural binary action of the general linear group GL(n,R)
on a vector space R" defined by

Oé(A,X, Y) = X+A(y - X)a
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AeGL(n,R), x,y € R".
For any g € G let oy : X* — X a continuous map defined by

Oég($1,372) = a(g, z1,2),

r1,T9 € X.
Proposition. The map g — o, is homomorphism of a group G to the

group of all invertible continuous binary operations of a topological space
X.

Definition 2. A continuous map f : X — Y between binary G-spaces
(G, X,a) and (G,Y, ) is called equivariant map, provided

flalg, v1,22)) = B(g, f(1), f(x2))

for all g € G and x1,29 € X.

Theorem|Tietze-Gleason| Let G' be a compact group and let p : G —
G L(n,R) be arepresentation of a group G. If X is a normal binary G-space
and A is a closed invariant subspace of X then any equivariant continuous
map ¢ : A — R" has an equivariant extension f : X — R".

About a Stone space of one Boolean algebra
R.A. Golovastov

Udmurt State University, Dept. of Mathematics, 1 Universitetskaya Str.,
Izhevsk, 426034, Russia

rpa4@bk.ru

We consider the Boolean algebra of the same type as algebra constructed
by Bell, and the Stone space of this Boolean algebra. This space is a
compactification of a countable discrete space N.

We prove that there are isolated points in remainder of this compacti-
fication, which are limits of some convergent sequences. We prove that a
clopen subset of our space, which is homeomorphic to Sw, is a closure of
an union of finitely many antichains from V.

We construct two examples: a clopen subset of the remainder without
isolated points, which is not homeomorphic to fw \ w; a subset of the
remainder which is homeomorphic to fw \ w, but is not a clopen.

v
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Coincidence of maps between two arbitrary spheres
D.L. Gongalves
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Given a map f : M — N where M, N are closed manifolds, one can
ask if the map f can be deformed to a map g such that the pair (f,g) is
coincidence free, i.e. {v € M | f(x) = g(x)} is empty. In the case where
M and N have the same dimension, this problem is well understood. In
the study of this question when the dimension of M is greater than the
dimension of N, a new question arises as follows: Assuming that a map
g as above exists, can we find ¢’ which is a small deformation of f and
has no coincidence with f7 It turns out that the answer of this problem is
always "yes” if dim(M) < 2dim(N) — 2, but there are examples where the
answer is "no” in case dim(M) > 2dim(N) — 2. The purpose of the talk is
to describe the state of the art of this question when the manifolds M and
N are spheres. We describe families of examples where the answer of the
problem is "no” and the relation of this problem with the strong Kervaire
invariant one problem. Also some known elements of the homotopy group
of the sphere are analyzed, but certainly not all. Few basic references
closely related with the talk follow below.

[DoGon] A. Dold; D. L. Gongalves: Self-coincidence of fibre maps, Osaka
Journal of Mathematics 42 2 (2005), 291-307.

[GonRan1]| D. Gongalves; D. Randall: Coincidence of maps from %"
bundles over S?" to S*", Boletin de la Soc. Matemdtica Mezicana 3 serie 10
Special issue in honor of Francisco ”Fico” Gonzalez Acuna (2004), 181-192.

[GonRan2] D. Gongalves; D. Randall: Self-coincidence of mappings be-
tween spheres and the strong Kervaire invariant one problem, C. R. Acad.
Sci. Paris Ser. 1342 (2006), 511-513.

[KoRan] U. Koschorke; D. Randall: Kervaire invariants and selfcoinci-
dences. Preprint 2011.
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L-spaces and left-orderability
Cameron McA. Gordon

The University of Texas at Austin, Dept. of Mathematics, 2515
Speedway - Stop C1200, Austin, TX 78712-1202, U.S.A.

gordan@math.utexas.edu

We will discuss evidence for the conjecture that a rational homology
3-sphere is an L-space if and only if its fundamental group is not left-
orderable. This is joint work with Steve Boyer and Liam Watson.

Homotopy Rigidity of the Functor XX
Jelena Grbic

School of Mathematics, University of Manchester, Oxford Road,
Manchester, M13 9PL, UK

jelena.grbic@manchester.ac.uk

The main problem of this talk is the study of the homotopy rigidity
of the functor »€). Our solution to this problem depends heavily on new
decompositions of looped co-H-spaces. I shall start by recalling some clas-
sical homotopy theoretical decomposition type results. Thereafter, I shall
state new achievements and discuss how new functorial decompositions of
looped co- H-space arise from an algebraic analysis of functorial coalgebra
decompositions of tensor algebras. This is a joint work with Jie Wu.

Compactifications and the Stone spaces of Boolean
algebras

A.Gryzlov

Udmurtia State University, Math. Faculty, 1 Universitetskaya Str.,
Izhevsk, 426034, Russia

gryzlov@udsu.ru

We consider some compactifications of a discrete space, which are the
Stone spaces of Boolean algerbas. We examine relations between properties
of the algebra and its subsets and properties of the Stone space.
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First level Borel isomorphism mapping L,(X) onto
L,(Y) implies the equality dimX = dimY
S.P.Gul’ko, T.E.Khmyleva

Tomsk State University, Department of Mathematics, pr. Lenina 36,
Tomsk, 634050, Russia

gulko@math.tsu.ru, khmyleva@Gmath.tsu.ru

Let L,(X) be the conjugate space for usual continuous function space
Cp(X).

A mapping is said to be a first level Borel function, if the inverse image
of each F, - set is an F, - set. The mapping f is called a first level Borel
isomorphism if both f and f~! are first level Borel mapping. This notion
was introduced in [1].

The following statement is a simultaneous generalization of Jayne-Rogers’
theorem [1] and (partially) of Pestov’s theorem [2].

Theorem Let X and Y be o-compact metric spaces and suppose that
L,(X) is a first level Borel isomorphic to L,(Y). Then dimX = dimY .

In our talk we shall also consider some related problems, in particular,
a generalization of this theorem on the case of uniform homeomorphisms
(in a spirit [3]).
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Cohomology ring of Seifert manifolds. Application to
the Borsuk-Ulam theorem

C. Hayat

University Toulouse III, Institut de Mathématiques de Toulouse, 118
route de Narbonne, 31400 Toulouse, France

claude.hayat@math.univ-toulouse.fr

Joint work of A. Bauval, D. Gongalves, C. Hayat, P. Zvengrowski.

For a pair (M, 7) where M is a closed manifold and 7 is a free involution
on M, the Borsuk-Ulam theorem is the answer to the following question:
what is the greatest m such that for any continuous map f from M to
R™, there exists © € M such that f o 7(z) = f(x)? These greatest m is
called the Zo-index(M, 7). Our goal is to compute the Zo-index when M is
a 3-dimensional Seifert manifold. The knowledge of the cohomology ring

structure of a Seifert manifold is needed to obtain conditions for which
Zo-index(M, 1) = 3.

A separable complete metric n-dimensional space
containing isometrically all compact metric
n-dimensional spaces

S.D. Iliadis

Moscow State University, Dept. of Mechanics and Mathematics,
Vorobevy Gogy, str.1 , 119899, Russia

s.d.iladis@gmail.com

We shall construct separable complete metric n-dimensional space con-
taining isometrically all compact metric n-dimensional spaces.

Complete pre-isotropic foliations and action-angle
variables in contact geometry

Bozidar Jovanovié

Mathematical Institute SANU, Kneza Mihaila 36, 11001, Belgrade, p.p.
367, Serbia

bozajOmi.sanu.ac.rs

A Liouville integrable Hamiltonian system can be considered as a toric
Lagrangian fibration. This approach is reformulated to contact manifolds
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(M, H) by Banyaga and Molino. Instead of a toric Lagrangian fibration,
one consider an invariant toric fibration transversal to the contact distri-
bution H, such that intersection of tori and H is a Lagrangian distribu-
tion with respect to the conformal class of the symplectic structure on
H. Slightly different notion of a contact integrability is given recently
by Khesin and Tabachnikov. They defined integrability in terms of the
existence of an invariant foliation F, called a co-Legendrian foliation.

Here, based on the Nehoroshev—Mishchenko—Fomenko noncommutative
integrability in Hamiltonian mechanics, we introduce an appropriate no-
tion of the noncommutative integrability within a framework of contact
geometry.
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Metrizable reminders of locally compact spaces
Alexandr Karasev

Nipissing University, Dept. of Computer Science and Mathematics, 100
College Drive, Box 5002, North Bay, Ontario P1B 8L7, Canada

alexandk@nipissingu.ca

This is a joint result with Vitalij Chatyrko. We describe those locally
compact noncompact separable metrizable spaces X for which the class
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R(X) of all metrizable remainders of X consists of all metrizable non-
empty compacta. We show that for any pair X and X’ of locally compact
noncompact connected separable metrizable spaces, either R(X) C R(X’)
or R(X') C R(X).

Equipartition of several measures
Roman Karasev

Dept. of Mathematics, Moscow Institute of Physics and Technology,
Institutskiy per. 9, Dolgoprudny, Russia 141700
or, Laboratory of Discrete and Computational Geometry, Yaroslavl’ State
University, Sovetskaya st. 14, Yaroslavl’, Russia 150000

r_n karasevOmail.ru

We prove several results of the following type: any d measures in R?
can be partitioned simultaneously into k equal parts by a convex partition
(this particular result is proved independently by Pablo Soberén). Another
example is: Any convex body in the plane can be partitioned into g parts
of equal areas and perimeters provided ¢ is a prime power.

The above results give a partial answer to several questions posed by
A. Kaneko, M. Kano, R. Nandakumar, N. Ramana Rao, and I. Barany.
The proofs in this paper are inspired by the generalization of the Borsuk—
Ulam theorem by M. Gromov and Y. Memarian.

The main topological tool in proving these facts is the lemma about the
cohomology of configuration spaces originated in the work of V.A. Vasil'ev.

Algebraic K-theory of stable operator algebras
M. Karoubi

University of Paris 7, Dept of Mathematics, 175 rue du Chevaleret, 75205
Paris, France

max.karoubi@gmail.com

Around 1978, it has been conjectured that algebraic and topological
K-theories are isomorphic for stable complex C*-algebras. This conjecture
has been proved in 1990 by Suslin and Wodzicki, using the notion of H-
unital ring due to Wodzicki, with other results due to Cuntz, Higson and
Kasparov. In this lecture, we give a new proof of this theorem and extend
it to real stable operator algebras. Besides the notion of H-unital ring,
we use exact properties of suitable completed tensor product. We also use
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special Fourier series in order to define Bott elements in algebraic K-theory.
This is joint work with Mariusz Wodzicki.

New Polynomial Invariants in Virtual Knot Theory
Louis H. Kauffman
Univeristy of Illinois at Chicago, Dept. of Mathematics, 851 South
Morgan Street, Chicago, Illinois 60607-7045, USA

kauffman@uic.edu

In my talk I shall concentrate on some recent developments in construct-
ing invariants of virtual knots that depend on the concept of an affine bi-
quandle. The invariants are simple, powerful and involve a subtle use of
parity. The talk will be self-contained.

Topology of algebraically solved systems and Boolean
functions

M. Kharlamov

Russian Academy of National Economy and Public Administration, Dept.
of Mathematical Simulation, Gagarin Str., Volgograd, 400131, Russia

mharlamov@vags.ru

We suppose that for a completely integrable Hamiltonian system the
separation of variables is found in the following form

ds;/dr = \/P,(s;,h), s€RF, heR™

Here, 7(t) is some monotonous function, P; are polynomials in one variable
also depending on the vector of arbitrary constants of integration h. If all
initial phase variables x € R" are expressed as rational functions of the
radicals of the type \/s; — ¢;;, where ¢;; are the roots of the polynomials
P;, then we say that the system is algebraically solved.

The examples of such systems are given by the classical solutions in the
rigid body dynamics. These are the cases of Euler, Goryachev and Chap-
lygin, Kovalevskaya for the gravity force field, partial cases of Clebsch,
Chaplygin, Goryachev for the motion of a rigid body in fluid etc. Re-
cently, some new cases of the separation of variables with algebraic explicit
solution were found for the generalized Kovalevskaya top in a double force
field. For these cases the covering of the plane of the separated variables
by corresponding integral surfaces in the phase space is of high degree.
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Therefore defining the topological type of all integral surfaces becomes
technically complicated and tiresome problem.

Given the constants h, the variables s oscillate in the accessible region
A(h). Then to define the topological type of the integral surface we have to
explore the multi-valued dependencies x(s; h) on A(h). It appears that the
correspondence between the number of the connected components of the
region A(h) and of the integral set J(h) C R" can be described in terms
of the equivalence classes of Boolean vectors with respect to some Boolean
vector functions of special type; we call these Boolean functions algebraical.
In fact, these are Zs-linear mappings of the corresponding vector spaces
over Zo. Thus, the problem of the rough topology investigation for an
algebraically solved system is formalized in terms of some invariants of
Z>-linear mappings. We present a number of statements about the linear
Boolean vector functions, which allow us to reduce the dimensions of the
image and pre-image spaces and calculate the invariants analytically in a
simple and clear form. We show various examples including the classical

problems and new complicated solutions.
The work is supported by the RFBR grant N 10-01-00043.

On the Alexandroff convergence
Ljubisa D.R. Koc¢inac

University of Nis, Faculty of Sciences and Mathematics, Visegradska 33,
18000 Nis, Serbia

lkocinac@gmail.com

In 1948, P.S. Alexandroff introduced a convergence for sequences of
continuous functions from a topological space X into a metric space Y and
proved that this convergence preserves continuity of the limit function. We
consider a statistical version of the Alexandroff convergence and prove that
this new kind of convergence is enough for continuity of the limit function.
Relations with function spaces and other kinds of convergence will be also
discussed.

Normality and Souslin property in Y>-products

A. Kombarov
Moscow State University, Mech.-Math., 119991, Moscow, RUSSIA
kombarov@mech.math.msu.su

One of the more interesting open problem in the theory of normality
in Y-products is Kodama’s question: whether or not every Y-product of
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Lasnev spaces is normal. There is now some model of set theory (due to

P.Koszmider) in which »-product of Lasnev spaces can be nonnormal.
We give an elementary proof of the following theorem: Let Y be a -

product of Lasnev spaces. If ¥ has the Souslin property, then ¥ is normal.

Perfect prismatoids and the conjecture concerning
with face numbers of centrally symmetric polytopes

M. Kozachok

Steklov Mathematical Institute Russian Academy of Science, Department
of Geometry and Topology, 8 Gubkina Str., Moscow, 119991, Russia &
Yaroslavl State University, Delone Laboratory of Discrete // and
Computational Geometry, 14 Sovetskaya Str., Yaroslavl, 150000, Russia

marina.kozachok@gmail.com

In my talk I shall concentrate on properties of perfect prismatoids in
relation to the well-known Kalai conjecture concerning with face numbers
of centrally symmetric polytopes .

A centrally symmetric convex polytope P is called a perfect prismatoid
if P = conv(F U F') for any pair of its antipodal facets F' and F".

The Kalai conjecture states that every centrally symmetric d-polytope
has at least 3¢ non-empty faces. An important class that attains the bound
is the class of Hanner polytopes. Hanner polytopes are defined recursively:
every centrally symmetric 1-polytope is a Hanner polytope. For dimensions
d > 2, a d-polytope is a Hanner polytope if it is the direct product or the
cross of two lower dimensional Hanner polytopes.

The aim of my talk is to prove that any Hanner polytope is a perfect
prismatoid and construct a 5-dimensional perfect prismatoid that is not a
Hanner polytope. In dimensions d < 5 any perfect prismatoid is a Hanner
polytope and vice versa.

Also it will be proved that any d-dimensional perfect prismatoid is affine
equivalent to some 0/1-polytope that is the convex hull of a subset of the
point set {0, 1}<.
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Symplectic invariants of almost toric 4-manifolds
I.K. Kozlov

M.V.Lomonosov Moscow State University, Faculty of Mechanics and
Mathematics, 1 Leninskiye Gory, Main Building, Moscow, 119991, Russia

ikozlov90@gmail . com

Almost toric manifolds form a class of singular Lagrangian fibered sym-
plectic manifolds that naturally generalize toric manifolds, Lagrangian
bundles and momentum maps with nondegenerate nonhyperbolic singu-
larities from the theory of integrable Hamiltonian systems. In dimension
four almost toric manifolds also can be described as Lagrangian fibrations
with either elliptic or focus-focus singular points.

Almost toric manifolds were introduced by Margaret Symington in [1]
and in dimension four they were classified up to diffeomorphism by Naichung
Conan Leung and Margaret Symington in [2].

In the talk we will describe different invariants of almost toric 4-manifolds
and explain their classification up to fiberwise symplectomorphism.

The case when there is no singular points was completely studied in [3]
and can also be found in [4, 5].
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Strongly locally homogeneous spaces and their
completions

K.L. Kozlov

Moscow State University, Department of Mechanics and Mathematics,
119991 Moscow, Russia

kkozlov@Omech.math.msu. su

Strongly locally homogeneous (SLH) spaces were introduced by L. Ford,
who proved that they are coset spaces. For metrizable spaces J. van Mill
sharpened this result showing that separable metrizable (Polish) SLH space
is a coset space of a separable metrizable (Polish) group. We give charac-
terization of Polish SLH spaces and show that every separable metrizable
SLH space has a completion which is a Polish SLH space. Moreover this
completion is obtained in agreement with the completion in two-sided uni-
formity of the group that realizes the SLH property of a SLH space.

Conjugation invariants of area-preserving
self-diffeomorphisms of a 2-disk

E.A. Kudryavtseva

Moscow State University, Department of Mathematics and Mechanics,
Leninskie gory 1, Moscow 119991, Russia

eakudr@mech.math.msu.su

Denote by S = Symp.(D) the group of area-preserving self-diffeomor-
phisms of a 2-disk D = D? that are identical on the boundary of the disk.
A function I : S — R such that I(ghg™!) = I(h) for all g,h € S is called
a conjugation invariant on the group S.

An example of a conjugation invariant is the Calabi invariant (1970),
Cal(h) := fol [, Hi(p,q)dpdgdt, h € S. Here g, € S is a path in the
group S joining h = g¢; to the identity gy = idp, while the function
H; = Hi(p,q) on the disk D is defined by the equalities dg:(p,q)/dt =
(—0H(9:(p,q))/9q, OHi(9:(p,q))/Op) and Hi|pp = 0. Such a path g; (to-
gether with a family of functions H;) exists for any h € S, since S is
path-connected with respect to C*°-topology. The Calabi invariant is a dif-
ferentiable homomorphism, moreover its differential at any element h € S
has the form dI(h)(H) = [, H(p,q)dpdq (and, hence, does not depend
on h). Here the tangent space at h to S is identified with the space of
all Hamiltonian vector fields v = (—0H/0q,0H/0p) on D, where H is a
smooth function on D vanishing at dD. A. Banyaga (1978) proved that
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any homomorphism 7/ : S — R has the form I = AoCal for a suitable
automorphism A of the group (R, +).

Other examples of conjugation invariants on the group S are the area of
the fixed point set Fix(h), the Hofer norm |[|Al|o =infy,, fol(maXD\Htht
due to H. Hofer (1993), and certain “spectral invariants” [P]. These invari-
ants are not differentiable, but are Lipschitz only.

We prove that any differentiable conjugation invariant I on S has the
form I = AoCal for a suitable function A : R — R, provided that
dI(h)(H) = [, K(h,p,q)H(p,q)dpdq for some continuous function K :
S x D — R with respect to C''-topology on S.

This result can be generalized to the group Ham.(M,w) of compactly
supported Hamiltonian self-maps of an open surface M equipped with an
area form w. Our proof uses the result by Ch. Bonatti and S. Crovisier
[BC] that the C'-generic volume-preserving diffeomorphism h € S admits
a dense orbit. Our result seems to be related to the result by D. Serre [S]
about the first order invariants of divergence free vector fields on R3.

[P] L. Polterovich, The geometry of the group of symplectic diffeomor-
phisms. Birkhauser Verlag, 2001.

[BC] Ch. Bonatti and S. Crovisier, Récurrence et généricité, Invent.
Math. 158 (2004), 33-104.

[S] D. Serre, Les invariants du premier ordre de I'equation d’Euler en
dimension trois, Physica 13D (1984), 105-136.

On multiplicative functionals on the space of
continuous functions

V.R. Lazarev

Tomsk State University, Department of Mathematics, pr. Lenina 36,
Tomsk, 634050, Russia

lazarevOmath.tsu.ru

Let X be a Tychonoff space and C,(X) be a space of all continuous
real-valued functions on X, endowed with the topology of pointwise con-
vergence.

Definition 1. A mapping z}" - ... 27" : C,,(X) — R will be said to be
a Monomial, if it defined by the rule
ot (e) = (@) (o)),

where ¢ € C)(X) and z; € X, p; € N for every i € N.
The subspace in C,C,(X), consisting of all monomials we denote by
Dy(X).
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Theorem 1. Every multiplicative functional on C,(X) is a monomial.

Definition 2. Let K : D,(X) — X be a finite-valued mapping, defined
by the rule K(f) = {x1,---, 2} for each monomial f=al - alk
This mapping will be called by the support-mapping.

Theorem 2. The support-mapping K is surjective and upper semicon-
tinuous.

Theorem 3. Let h: Cp(X) — C,(Y) be a homeomorphism 'onto’ and
e C,Cu(Y) — C,Cy(X) be its natural conjugate mapping. If h*(Y) C
D,(X) and (h*)"!(X) C D,(Y). then

(a) X is compact iff Y is compact;

(b) I(X) = (V).

On the stability of the colored Jones polynomial
Thang Le
Georgia Institute of Technology

We prove the stability of the coefficients of the colored Jones polynomial
of an alternating link and present a generalized Nahm sum formula for
the resulting power series, defined in terms of a reduced diagram of the
alternating link. This is joint work with S. Garoufalidis.

Nonautonomous flows and uniform topology
L. Lerman

Nizhny Novgorod State University, Faculty of Mathematics & Mechanics,
23 Gagarin Ave., Nizhny Novgorod, 603950, Russia

lermanl@mm.unn.ru

Let M be a C*°-smooth closed manifold, V(M) be the Banach space
of C"-smooth vector fields on M endowed with C"-norm. A C"-smooth
nonautonomous vector field on M is an uniformly continuous bounded map
v: R — V"(M). If this map v is also uniformly continuous C*-differentiable
map, we call v to be a C"*—smooth nonautonomous vector field. A nonau-
tonomous vector field v (below NVF, for brevity) generates a foliation F' of
manifold M x R into its integral curves {(x(t),t)}. Henceforth we consider
M xR with its standard uniform structure. All uniformly continuous maps
of M x R to itself are considered with respect to this uniform structure.
A notion of equivalent nonautonomous vector fields proposed in [1] is as
follows.
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Definition. Two NVFs vy,v1 are uniformly equivalent if foliations
F1, Fy are uniformly equivalent, i.e. there is an equimorphism (uniform
homeomorphism having a uniform inverse homeomorphism) h : M x R —
M x R respecting foliations (i.e. sending an every integral curve vy of Fi
to an integral curve of Fy along with its orientation in R).

It is clear that this equivalency relation distinguishes NF'Vs in which the
asymptotic behavior of integral curves are different. This relation allows
us to introduce the notion of the structurally stable NVF's.

Definition. An NVF v is structurally stable if there is a neighborhood
of v in the space of NV F's such that all NVFs in this neighborhood are
uniformly equivalent.

The development of the modern theory of (autonomous) dynamical sys-
tem showed that this equivalency relation is too rigid and well suited
for the classification of systems with a simple structure, now known as
Morse-Smale systems (flows and diffeomorphisms). In analogy, for nonau-
tonomous vector fields a class of Morse-Smale type vector fields was distin-
guished (L.Lerman). For such NVFs it was shown the Morse type inequal-
ities to be valid. For gradient NVFs on two-dimensional closed manifolds
a complete invariant of the uniform equivalency was found, like the Leon-
tovich’s scheme on S? or Peixoto’s graph on M? for autonomous vector
fields.

Now suppose a NVF v to be of the gradient type and almost periodic
in time, that is the map v : R — V"(M) is almost periodic.

Theorem. Every integral curve of v tend as ¢ — 0o to some almost
periodic integral curve I'; and to another almost periodic integral curve I’y
as t — —oo. Both I'; 2 possess exponential dichotomy of R. The number
of these I'; is finite and its types obey to the Morse inequalities.

This research was supported in part by RFBR under the grant 10-01-
00001a and the Russian Federation Government grant, contract
No.11.G34.31.0039.
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Orbit configuration spaces of small covers and
quasi-toric manifolds

Zhi Lu

School of Mathematical Sciences, Fudan University, Shanghai, 200433,
P.R. China

zlu@fudan.edu.cn

In this talk, we investigate the orbit configuration spaces of some equiv-
ariant closed manifolds over simple convex polytopes in toric topology,
such as small covers, quasi-toric manifolds and (real) moment-angle man-
ifolds; especially for the cases of small covers and quasi-toric manifolds.
These kinds of orbit configuration spaces are all non-free and noncompact,
but still built via simple convex polytopes. We obtain an explicit formula
of Euler characteristic for orbit configuration spaces of small covers and
quasi-toric manifolds in terms of the h-vector of a simple convex poly-
tope. As a by-product of our method, we also obtain a formula of Euler
characteristic for the classical configuration space, which generalizes the
Félix-Thomas formula. In addition, we also study the homotopy type of
such orbit configuration spaces. In particular, we determine an equivariant
strong deformation retract of the orbit configuration space of 2 distinct
orbit-points in a small cover or a quasi-toric manifold, which turns out
that we are able to further study the Betti numbers and (equivariant) co-
homology of such an orbit configuration space. This is a joint work with
Junda Chen and Jie Wu.

Convex Hull of a Poisson Point Process in the
Clifford Torus

Alexander Magazinov

Steklov Mathematical Institute of RAS, dept. of Geometry and Topology,
8 Gubkina street, Moscow 119991, Russian Federation

magazinov-al@yandex.ru

In the 4-dimensional Euclidean space E* consider the two-dimensional
Clifford torus

T? = {(cos ¢, sin ¢, cos 1, sin1h) : —m < ¢, < 7}

Clearly, T? is a submanifold of the three-dimensional sphere
Sos = {(61,62,6,&) 1 61 + & + & + & =2}
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N. Dolbilin and M. Tanemura [1] performed a computer simulation of
a Poisson process Py(w) C T?. As a result, certain conjectures on the
combinatorics of a random polytope II(A) = convPy(w) have been posed.
In particular, it was suggested that the mean valence of a vertex of II(\)

has expectation of magnitude O*(In \).
The following results hold for TI()).

Theorem 2 Fori=1,2,3 one has E f;(II()\)) = O*(AIn \) as A — oo.

Theorem 3 The expectation of the mean valence of a vertex of IL(\) has
asymptotics Ev(II(N)) = O*(In A) as A — oo.

Remark 1 The statement of theorem 3 is exactly the conjecture posed by
Dolbilin and Tanemura.

One possible way to prove theorems 2 and 3 involves the cap covering
technique described in [2]. The same technique allows to estimate the
variance of f3(P()\)).

Theorem 4 varf3(II(\)) < An? \.

Theorem 4 immediately implies the law of large numbers for f3(P(\)).

[1] N. DOLBILIN AND M. TANEMURA, Voronoi tilings for the Clifford

torus in a 3-sphere, in Voronoi’s Impact on Modern Science, Book 4,
vol. 1, pp. 210 — 219, 2008.

Theorem 5

1
> -
5) < 2

f3(IL(A)) — E f3(I1(N))
E f3(I1(A))
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Affine reducibility
A. Maksimenko

Yaroslavl State University, Dept. of Computer Sciences, 14 Sovetskaya
Str., Yaroslavl, 150000, Russia

maksimenko_a n@mail . ru’

We consider families of 0/1-polytopes related to well-known NP-complete
problems: knapsack, traveling salesman, graph colouring, independent set,
3-assignment, set covering, 3-SAT, and some others. We propose a way
of structuring the set of combinatorial polytopes. Its basis is the classical
notion of polynomial reducibility. It turns out that if some combinatorial
problem X reduces to some problem Y then the polytope of X is usually an
affine image of a face of the polytope of Y. In some cases the appropriate
affine transformation is invertible, i.e. the polytope of X is affinely equiv-
alent to a face of the polytope of Y. Hence, the polytope of X has a more
simple structure then the polytope of Y. We show that boolean quadratic
polytopes are faces of the mentioned 0/1-polytopes.

Random knots
A. Malyutin

St.Petersburg Department of Steklov Mathematical Institute RAS, 27
Fontanka, St.Petersburg, 191023, Russia

malyutin@pdmi.ras.ru

In my talk I shall discuss methods for generating a random knot. A
random knot can be obtained from tilings in the Euclidean and hyperbolic
planes, via random walks on the braid group or the mapping class groups of
closed surfaces, with the help of Poisson distributions, etc. A random knot
is knotted with high probability, under almost all reasonable approaches.
An interesting fact is that some methods of generating a knot produce
mostly composite knots, while under some other approaches prime knots
prevail drastically. This problem (prime/composite) is still open for many
methods. Questions emerging in this area of research are related to random
walk theory, hyperbolic geometry, percolation theory, etc.

3Supported by the Russian government project 11.G34.31.0053
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Prime Decompositions and the Diamond Lemma

S.V. Matveev

Chelyabinsk State University, Dept. of Mathematics, Kashirin Brothers

Str., 129, Chelyabinsk, 454001, Russia

matveev@csu.ru

We develop a new version of the famous Diamond Lemma and describe
several results on decompositions of different geometric objects. All results
are obtained by using that version.

1.

The Kneser-Milnor and Swarup prime decomposition theorems of 3-
manifolds into connected sums and boundary connected sums (new
proofs).

A prime decomposition theorem for knotted graphs in 3-manifolds
containing no non-separating 2-spheres.

Disproving the ”folklore” prime decomposition theorem for 3-orbifolds.

A new theorem on annular splittings of 3-manifolds, which is indepen-
dent of the JSJ-decomposition theorem.

The prime decomposition theorem for homologically trivial knots in
direct products of surfaces and intervals.

The prime decomposition theorem for virtual knots.

Metric h-homogeneous spaces
S.V. Medvedev

South Ural State University, Dept. of Mechanics and Mathematics, pr.

Lenina, 76, Chelyabinsk 454080, Russia

medvOmath.susu.ac.ru

I shall survey some recent results on metric h-homogeneous spaces.

A metric space X is called h-homogeneous if every nonempty clopen
subset of X is homeomorphic to X and IndX = 0.

Among homogeneous spaces, h-homogeneous ones often have additional
properties. We pick out some examples of such properties. The notion of
an h-homogeneous space was firstly applied to the Borel sets. The first
significant results about metric A-homogeneous spaces were obtained by
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A.V. Ostrovsky, J. van Mill, and F. van Engelen. h-Homogeneity has
recently been studied in the case of compact or Tychonoff spaces.

Theorem 1. Let X and Y be metric h-homogeneous spaces of first
category. Suppose X is homeomorphic to an Fj,-subset of Y and Y is
homeomorphic to an Fj,-subset of X. Then X is homeomorphic to Y.

Theorem 2. Let X“ be a metric space of first category, IndX = 0, and
I be an F,-subset of X“. Then F' x X*“ is homeomorphic to X%.

Theorem 3. Let metric spaces X and Y have dense topologically
complete subspaces and IndX = IndY = 0. If every nonempty open
subset of X contains a closed copy of ¥ and every nonempty open subset
of Y contains a closed copy of X, then X is homeomorphic to Y.

Theorem 4. Let X be a metric homogeneous space of weight k£ such
that IndX = 0, w(U) = k for every nonempty open set U C X, and
cf(k) > w. Then X is an h-homogeneous space.

Theorem 5. Let X be a separable zero-dimensional metrizable topolog-
ical group which is not locally precompact. Then X is an h-homogeneous
space.

Combinatorics of collapsible polyhedra and maps
S. Melikhov

Steklov Mathematical Institute, 8 Gubkina st., Moscow, 119991 Russia
Delaunay Laboratory of Discrete and Computational Geometry,
Yaroslavl’ State University, 14 Sovetskaya st., Yaroslavl’, 150000 Russia

melikhov@mi.ras.ru

The aim of this talk is to give two combinatorial characterizations of
collapsible polyhedra: (i) in terms of zipping of posets, as defined by
N. Reading [Electron. J. Combin., 11 (2004), R#74], and (ii) in terms
of constructible posets, which generalize acyclic constructible simplicial
complexes in the sense of Topological Combinatorics, originating in M.
Hochster’s work on Cohen-Macalay rings [Ann. Math. 96 (1972), 318-337].

A simplicial complex, and more generally a cell complex (=finite CW-
complex whose attaching maps are PL embeddings) can be reconstructed
from, and so will be identified with, the poset of its nonempty faces.

Let P be a poset. If a p € P covers two incomparable elements ¢,r € P,
and every s < p with s # ¢,r satisfies s < ¢ and s < r, then P is said
to elementarily zip onto the quotient (in the concrete category of posets
over the category of sets) of P by the subposet ({p,q,7r}, <). A zipping of
posets is a sequence of elementary zippings.
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Theorem 1. Let X be a polyhedron. The following are equivalent:

(i) X is collapsible;

(ii) X can be triangulated by a simplicial complex that zips onto a point;
(11i) X can be cellulated by a cell complex that zips onto a point.

We call a poset P constructible if either P has a greatest element or
P = QU R, where () and R are order ideals, each of ), R and Q N R
is constructible, and every maximal element of () N R is covered by a
maximal element of () and by a maximal element of R, and not covered
by non-maximal elements of P. Order complexes of constructible posets
are clearly contractible. No triangulation of the dunce hat is constructible,
but there exists a constructible 2-dimensional simplicial complex whose
underlying polyhedron is not collapsible [M. Hachimori, Discrete Math.,
308 (2008), 2307-2312].

Theorem 2. A cell complex K zips onto a point if and only if the dual
poset K* 1s constructible.

A PL map is called collapsible if its point-inverses are collapsible (so in
particular nonempty). By a well-known result of M. M. Cohen, composition
of collapsible retractions is a collapsible retraction [Trans. Amer. Math.

Soc. 136 (1969), 189-229].
Corollary. Composition of collapsible maps is collapsible.
The only proof known to the speaker relies on Theorems 1 and 2.

Self-adjoint commuting ordinary differential
operators

A.E. Mironov
Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
mironov@math.nsc.ru

We find sufficient conditions when an operator of fourth order commut-
ing with an operator of order 4¢g + 2 is self-adjoint. We introduce an equa-
tion on potentials V (), W (z) of the self-adjoint operator L = (92+V )?>+W
and some additional data. With the help of this equation we find the first
example of commuting differential operators of rank two corresponding
to a spectral curve of arbitrary genus. These operators have polynomial
coefficients and define commutative subalgebras of the first Weyl algebra.

49



Construction of classifying space of transitive Lie
algebroids

A.S.Mishchenko (Jointly with Li XiaoYu)

Moscow Lomonosov State University, Dept. of Mathematics, Leninskie
Gory, Moscow, 119991, Russia

asmish@mech.math.msu.su

Transitive Lie algebroids have specific properties that allow to look at
the transitive Lie algebroid as an element of the object of a homotopy
functor. Roughly speaking each transitive Lie algebroids can be described
as a vector bundle over the tangent bundle of the manifold which is endowed
with additional structures. Therefore transitive Lie algebroids admits a
construction of inverse image generated by a smooth mapping of smooth
manifolds.

Due to to K.Mackenzie ([1]) the construction can be managed as a ho-
motopy functor T'L A, from category of smooth manifolds to the transitive
Lie algebroids. The functor T'LA, associates with each smooth manifold
M the set TLAG(M) of all transitive algebroids with fixed structural finite
dimensional Lie algebra g. Hence one can construct ([2],[3]) a classifying
space By such that the family of all transitive Lie algebroids with fixed
Lie algebra g over the manifold M has one-to-one correspondence with the
family of homotopy classes of continuous maps [M, By]: A(M) =~ [M, By].

In spite of the evident categorical point of view we faced the challenge
of geometrical construction of the classifying space, in particular general-
ization of the Eilenberg-MacLane spaces, realization of the cohomological
obstructions for equivariant mapping and others.
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Non-commutative signature and fixed points
Quitzeh Morales Meléndez

Universidad Nacional Auténoma de México, Institute of Mathematics,
office Oaxaca Leon 2, Oaxaca de Juarez, 68000, Mexico

quitzeh@matcuer.unam.mx

In my talk will be shown how to reduce the computation of the non-
commutative signature to its computation on fixed points sets. This will
be done in terms of bordisms of algebraic Poincaré complexes.

On a Boundary of a Neighborhood of an Isolated
Stationary Point of a Planar Conical Local
Dynamical System

E.Yu. Mychka
Moscow State University, Mech.-Math., Moscow, 119991, Russia
mychkaevg@mail .ru

We consider the structure of a neighborhood of an isolated stationary
point (ISP) of a planar conical local dynamical system (LDS). We study
the structure of a neighborhood of an ISP usinig the axiomatic theory
of ordinary differential equations (see Filippov V.V., Solution Spaces of
Ordinary Differential Equations, Moscow: Izd. Moskov. Univ., 1993).
The main result is the following

Theorem. A neighborhood of an ISP of a planar conical LDS is regular
(see Mychka E.Yu., On the Structure of a Neighborhood of an Isolated
Stationary Point of a Local Dynamical System on a Plane, Differ. Uravn.,
2011, vol. 47, no. 2, pp. 195-208).

To obtain the main result we construct a neighborhood with the special
boundary. In addition to transversal properties the boundary meet each
ray only at one point.
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On three functors: 5, \ and v
Inderasan Naidoo

University of South Africa, Department of Mathematical Sciences, P.O.
Box 392, UNISA 0003, South Africa

naidoi@unisa.ac.za

The talk relates joint work with Themba Dube on the Stone-Cech com-
pactification SL, the Lindelof coreflection AL and the Realcompact core-
flection v L of a completely regular frame L. In this pointfree setting, the
classical notions of compactness, Lindelofness and paracompactness have
their traditional characterizations via covers. In this talk we consider spe-
cial commutative diagrams which we call round squares and show that the
above classical notions, inclusive of realcompactness, may be characterized
in terms of these type of diagrams.

On Some Property of Axial Diameters of a Simplex
M. Nevskii

P.G. Demidov Yaroslavl State University, Dept. of Mathematics, 14
Sovetskaya Str., Yaroslavl, 150000, Russia

mnevsk@uniyar.ac.ru

Let C' be a convex body in R". Denote by ¢C' the homothetic copy of
C with center of homothety in the center of gravity of C' and coefficient o.
By a(C) denote the minimal ¢ > 0 such that @, = [0, 1]" is contained in
a translate of 0C. Let d;(C) be the ith axial diameter of C, i.e., the length
of a longest segment in C' parallel to the ith coordinate axis. The main
result of my talk is the following statement.

Theorem. For each C,

a(C) < ;di(lc). (1)

If S is a nondegenerate simplex, then

"\ 1
@(S):;di(s).

In other words, in the case C' = S there is an equality in (1).

I also mention some corollaries of this theorem.
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Framings of knotted graphs
V. Nezhinskij
St.-Petersburg State University, Dept. of Mathematics and Mechanics,
Bibliotechnaya pl. 2, Starij Petergof, 198904 St.-Petersburg, Russia //

Herzin State Pedagogical University of Russia, Math. Dept., nab. r.
Mojki 48, 191186 St.-Petersburg

nezhin@pdmi.ras.ru
The main aim of the talk is to define an analogue of the framing of a

classical knot for knotted graphs and to classify the framings of a knotted
graph up to isotopy.

Geometry of integrable non-Hamiltonian systems
Tien Zung Nguyen
Institut de Mathématiques de Toulouse, Université Paul Sabatier 118
route de Narbonne, Toulouse, France
tienzung.nguyen@math.univ-toulouse.fr

I will present a geometric theory of integrable dynamical systems, with
results about normal forms and geometric linearization of singularities, lo-
cal, semi-local and global invariants and classification, obstructions to in-
tegrability, and related geometric objects, including generalized toric man-
ifolds, commuting foliations, etc.

Topology of the Liouville foliation in the integrable
case of Goryachev in the problem on motion of a
rigid body in fluid
S.S. Nikolaienko

Moscow State University, Department of Mechanics and Mathematics, 1

Leninskie Gory, Moscow, 119991, Russia Federation

nikostas@mail.ru*

The generalized Kirchhoff equations of rigid body motion in fluid have
the form

S=SX—+T X —, FT=7X— (1)

4The research was supported by the RFBR (grant 10-01-00748), the Programme for Support of Leading
Scientific Schools (grant NSh-3224.2010.1), the Programme for Development of Scientific Potential of
Higher Education (grant RNP-2.1.1.3704), and the federal target programme ”Scientific and Scientific-
Pedagogical Personnels of Innovative Russia” (grant nos. 02.740.11.5213, 14.740.11.0794).
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where s, € R3 are the impulse moment and the impulse force respectively,
H = H(s,r) is the total energy. This system of equations always possesses
the geometric integral f; = 7“% +7’% +r?2), the area integral fo = sy + s91r9 +
s3r3, and the energy integral H. At the common level set {f; = a?, fo = g}
the system is Hamiltonian. In [1] D. N. Goryachev found an integrable case
where ;

2r2’

In [2], on the basis of Boolean functions method of M. P. Kharlamov [3],
P. E. Ryabov obtained the real seraration of variables for the Goryachev
case which allowed to study phase topology of the system.

For the partial case b = 0 integrability of the system (1) was proved by
S. A. Chaplygin in [4]. In the case ¢ = 0 he found an additional integral
and also reduced the problem to elliptic quadratures. In [5] topology of the
Liouville foliation in the case b = 0 was investigated (topological type of en-
ergy surfaces, bifurcation sets, bifurcations of Liouville tori). In the present
talk for the Chaplygin case we calculate the Fomenko-Zieschang invariant

which is known to be a complete invariant for the Liouville equivalence
(see [2]).

1 1
H = (87 + s+ 283) + Se(r) —r3) +
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Hypergraphs of a special type and properties of the
cut polytope relaxations

Andrey Nikolaev

Laboratory of Discrete and Computational Geometry,
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werdan.nik@gmail.com
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Consider the set of 3-uniform mixed hypergraphs of the form G =
(V,E, A), where V is the vertex set, i.e., V =N, = {1,2,3,...,n}; F
is the set of unoriented edges, i.e., £ = {(i,7,k)} C N x N x N; and A is
the set of oriented edges, i.e., A = {((4,7),k)} € NxN x N, where the pair
of vertices (i, j) is the beginning of the edge and the vertex k is the end of
the edge.

We introduce the operation of inversion of the i-th vertex in a hyper-
graph G = (V, E, A) which transforms all edges incident to this vertex, as
follows:

(¢, 7, k) = ((J, k), 2),
((J: k), 40) — (2,5, k),
(1)) = (0. K). )

Let G denote the class of hypergraphs G = (V, E, A) for which the
set E of unoriented edges is nonempty and remains nonempty under all
possible inversions.

We use hypergraphs of the form specified above to describe properties
of the cut polytope relaxations.

The object of the research is the class of rooted semimetric polytopes
M,,. Polytopes from this class have a number of special features, which
provoke significant interest in such polytopes.

The polytope M7, generated by all integer vertices of M, is called the
cut polytope, because the well-known NP-complete problem of maximal
cut reduces to optimizing a linear objective function on M?Z. Therefore,
M, is a relaxation polytope for the cut problem.

Let us define following sequence of higher level nested relaxations of the
cut polytope, described by a special procedure:

CUT(”) = Mn,n - Mnm—l C..C Mn,4 - Mn,3 - Mn,Q = Mml = Mn

Note that each point u € M), 3 can be assigned a 3-uniform mixed hyper-
graph of the form specified above in accordance with certain rules, which
we call the hypergraph of the point G(u).
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Theorem 1. If the hypergraph G(u) of some point w € M, 3 belongs
to the class Gy, then any decomposition of u in a conver combination of
vertices of My 3 contains no integer vertices.

Based on the Theorem 1 was proved the following

Theorem 2. For any n > 5 and q > 195, there exist points u in the
polytope M, 4 and v in the polytope M, 5 whose hypergraphs G(u) and G(v)
belong to the class G.

Isometrical embeddings of finite metric spaces
A. Oblakova

Moscow State University, Dept. of Mathematics, Russia
oblakovaanna@mail.ru

We shall concentrate on some problems on isometrical embeddings. Let
7 be the class of all finite metric spaces with diameter < d consisting of
less than or equal to n points. It will be proved that for every n € N there
is a metric on the Cantor set such that every element of F] isometricaly
embedds into this Cantor set.

On piecewise smooth cohomology of locally trivial
Lie groupoids
Jose M. R. Oliveira
Lisbon, Portugal

A. Mishchenko and J. Oliveira in [3] defined the notion of piecewise
smooth cohomology of transitive Lie algebroids defined over combinatorial
manifolds and proved that piecewise smooth and Lie algebroid cohomology
of a transitive Lie algebroid over a combinatorial manifold are isomorphic.
In this talk, we describe an application of that result which consists in
the relationship between piecewise de Rham cohomology of left invariants
forms of a locally trivial Lie groupoid on a combinatorial manifold and
piecewise smooth cohomology of its Lie algebroid.

References

[1] Jan Kubarski, Pradines-type groupoids over foliations; cohomol-
oqy, connections and the Chern-Weil homomorphism, Preprint
n. 2, Institute of Mathematics, Technical University of Lodz,
August 1986.

56



[2] Kirill Mackenzie, General Theory of Lie Groupoids and Lie Al-
gebroids, London Mathematical Society Lecture Note Series 213,
Cambridge U. Press, 2005.

[3] Aleksandr Mishchenko, Ribeiro Jose, Generalization of the Sul-
livan construction for Transitive Lie Algebroids, available at
arXiv:1102.5698v1 [math.AT] 28 Feb 2011.

On o-countably-compact of space C)(X)
Alexander V. Osipov, Evgenii G. Pytkeev
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The authors offer a characterization of the P-property of topological
space X in terms of space C)\(X) of continuous real functions on Tychonoff
space X in the set-open topology. It is shown that space C\(X) of contin-
uous real functions on X is o-countably-compact in the set-open topology
if and only if

1. X is a pseudocompact space;

2. set X(P) of P-points of X is dense in X;

3. the family A consists of finite subsets X (P);

4. Cp(X(P)|X) is o-countably-compact.

References

[1] Arhangel’skii A.V. Topological Function Spaces (Kluwer Academic
Publ.).

[2] Tkacuk V.V. The spaces C,(X): decomposition into a countable
union of bounded subspaces and completeness properties // Topology
and its Applications. 22. 1986. P. 241-253.

57



On uniform Eberlein compacta

B.A. Pasynkov

Moscow State University, Department of Mechanics and Mathematics,
119991 Moscow, Russia

bpasynkov@gmail.com

Recall that a compactum is called uniformly Eberlein (= uF) if it is
homeomorphic to a subspace of a Hilbert space in its weak topology and
a compactum X is uF iff there exists a Tj-separating X functionally open
family A in X such that it is the union of families \; of order < n(i) €
Ny=1{0,1,2,...} and i € N,

A compactum X will be called n-uniformly Eberlein (= n-uF) if there
exists a Ty-separating X functionally open family A in X such that it is
the union of families \; of order < n € Ny and 7 € N.

Theorem. For any n € Ny, there exists an n-uE compactum X, # ()
such that for n € N, X, is not (n-1)-uE compactum. The Alexandroff
(= one-point) compactification X of the discrete union of all X, is an
uF compactum that is not n-uF compactum for all n € Ny. All X,,, n €
Ny U {o0}, are not metrcompacta.

The class of all n-uFE compacta is countably productive. There exists a
universal element in the class of all n-uE compacta of weight < 7, n € Ny,
T > W.

On Volodin space for Bruns—Gubeladze K-theory

Th.Yu. Popelensky

Dept.of Mechanics and Mathematics, Moscow State Lomonosov
University, Leninskie gory, 1, 119991, Moscow, Russia

popelens@mech.math.msu.su

In series of papers W.Bruns and J.Gubeladze had generalized some con-
structions from classical algebraic K—theory. One can observe that rela-
tions like [ef);, e?.] = €% in the group of elementary matrices can be encoded
not in terms ofz pairs of indices 75 but in terms of vectors e; — e; where ¢;
and e; are vectors corresponding to vertices of simplex.

Encoding the relations of such type by distinguished collection of vectors
vectors is possible for the class class of so called balanced polytopes. Cor-
responding vectors are called column vectors. Bruns and Gubeladze had
generalized group of elementary martices for balanced polytopes E(A, P)
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and defined analog of Quillen K—theory by KZQ(A, P) = m(BE(A, P)"),
where ¢ > 2, A is an assocaitive ring with unit, P is a balances polytope.

Also they had defined two different versions of Volodin space, and prove
that for so called Col-divisible polytopes two versions of Volodin space are
homotopy equivalent, Volodin K-theory K} (A, P) is defined and coincides
with K(A, P).

In our talk we shall consider examples of non-Col-divisible polytopes
and prove that for some of them one version of Volodin space gives us
K-theory which is equivalent to Quillen K-theory.

Bypasses for rectangular diagrams.
M. Prasolov

Moscow State University, Dept. of Mechanics and Mathematics, the
Bogolubov Laboratory of Geometrical Methods in Mathematical Physics,
1 Leninskie Gory., Moscow, 119991, Russia

0x00002A0Ggmail.com

In my talk I will discuss a criteria for a rectangular diagram to admit
a simplification which is given in terms of Legendrian knots. This criteria
is introduced in joint work with I. Dynnikov. This criteria provides that
there are two types of simplifications which are mutually independent in
a sense. As a consequence we have: a new proof of the monotonic sim-
plification theorem for the unknot; that a minimal rectangular diagram
maximizes the Thurston—-Bennequin number for the corresponding links;
and a proof of Jones’ conjecture about the invariance of the algebraic num-
ber of intersections of a minimal braid representing a fixed link type.

Polytopes and K-theory

Mikhail Prikhodko

Lomonosov Moscow State University, Faculty of Mechanics and
Mathematics, Russia, 119991, Moscow, GSP-1, 1 Leninskiye Gory, Main
Building

m_prix@mail.ru

At the end of 1990s Winfried Bruns and Joseph Gubeladze introduced
a new subclass of lattice polytopes called balanced. For such polytopes
and associative, commutative ring R with unity they generalised the group
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of elementary matrices to the group of elementary automorphisms of poly-
topal algebra which is a subgroup of the group of graded automorphisms of
polytopal algebra. Starting with this group one can “polyhedrize” algebraic
K-groups and obtain new K-groups which depend on balanced polytope
P and ring R mentioned above. We will denote such groups K;(R, P).
Since we start with elementary matrices and do not have “good” ana-
logue for GL,(R) there is no Ky(R, P) and K;(R, P). On the other hand
Bruns and Gubeladze proved that a lot of properties of K5(R) take place
for K5(R, P). Here is the list of some of such properties and new results
specific for polyhedral K-theory:

1. If P is a standard simplex (of arbitrary dimension) Ky (R, P) = Ks(R).

2. For any balanced P there exist a universal central extension of poly-
topal groups

1 — Ky(R,P) — St(R,P) —» E(R,P) — 1.

3. For some balanced polytopes K5(R, P) is not isomorphic to Ks(R).
First examples are availible in dimension 2 (for balanced polygons).

But if R has many units one of the following take place (in dimension
2):

KQ(R, P) = KQ(R) or KQ(R, P) = K2<R> D KQ(R)

The open question is: “Are there any balanced polytopes which gives
us new K-groups, not just a sum of ordinary ones?” Bruns and Gubeladze
proposed that a good candidate for such polytope is a pyramid over the
unit square.

In my talk I'm going to explain why this example doesn’t work (it
gives us a sum of 3 ordinary K-groups) and how one can calculate K, for
arbitrary 3-dimensional balanced polytope.
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Uniformly continuous and slowly oscillating functions
on metric spaces

I. V. Protasov

Department of Cybernetics, Kyiv University, Prospect Glushkova 2, corp.
6, 03680, Kyiv, Ukraine
i1.v.protasov@gmail.com

The metrics d, p on a set X is said to be uniformly equivalent if, for every
e > 0, there exists d > 0 such that, for all z,y € X,

d(z,y) <= plz,y) <e, plz,y) <d=d(z,y) <e.

A subset A of (X, d) is uniformly discrete if there exists € > 0 such that

d(x,y) > ¢ for all distinct z,y € A. We denote by UC(X,d) and UD(X, d)
the families of all bounded uniformly continuous functions and uniformly
discrete subsets of (X, d).

Theorem 6 For the metrics d,p on a set X, the following statements are
equivalent:

(1) d, p are uniformly equivalent;
(i) UC(X,d) = UC(X, p);
(i) UD(X,d) =UD(X, p).

The metrics d, p on a set X are said to be asymptotically equivalent if,
for every € > 0, there exists 6 > 0 such that, for all x,y € X,

d(z,y) <e=p(z,y) <4, plr,y) <e=d(r,y) <0

A subset A of (X,d) is thin if, for every € > 0, there exists a bounded
subset V' of X such that d(x,y) > ¢ for all distinct z,y € A\ V (V is
bounded if it is contained in some ball). We denote by Bound(X,d) and
Th(X,d) the families of all bounded and thin subsets of (X, d).

A function f : (X, d) toR is called slowly oscillating if, for all e > 0, § >
0, there exists a bounded subset V' of (X, d) such that, for all z,y € X\ V,
d(z,y) <6 =|f(x) — f(y)] <e. We denote by SO(X,d) the family of all
bounded slowly oscillating functions on (X, d).

Theorem 7 For the metrics d,p on a set X with Bound(X,d) =
Bound(X, p), the following statements are equivalent:

(1) d, p are asymptotically equivalent;
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(i) SO(X,d) = SO(X, p);
(iii) Th(X,d) = Th(X, p).

Distributivity versus associativity: homology theory
applied to knot theory

Jozef H. Przytycki
University of Maryland

While homology theory of associative structures, such as groups and
rings, has been extensively studied in the past beginning with the work of
Hopf, Eilenberg, and Hochschild, homology of non-associative distributive
structures, such as quandles, were neglected until recently. Distributive
structures have been studied for a long time. In 1880, C.S. Peirce empha-
sized the importance of (right) self-distributivity in algebraic structures.
However, homology for these universal algebras was introduced only sev-
enteen years ago by Fenn, Rourke, and Sanderson. We develop this theory
in the historical context and propose a general framework to study ho-
mology of distributive structures. We illustrate the theory by computing
some examples of 1-term homology (in particular showing nontrivial tor-
sion part), and then discussing 4-term homology for Boolean algebras. We
outline potential relations to Khovanov homology of links, via the Yang-
Baxter operator.

FqM,|,F,GL,] and F[S,] as Quantized Universal
Enveloping Algebras
Zoran Rakié
Faculty of Mathematics, University of Belgrade, Serbia
zrakicOmatf.bg.ac.rs

After introductory part to the problem which we studied, in the second
part we considered the quantum function algebra F,[GL,], and study the
subset

F,[GL,] = { f € F[GL,)

(F.Uy(01)) C 20,071}

of all elements of Fy[GL,] which are Z|q, ¢ *]-valued when paired with
U,(gl,) , the unrestricted Z[q, q_l]—integral form of U,(gl,,) introduced by
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De Concini, Kac and Procesi. In particular we obtain a presentation of
it by generators and relations, and a PBW-like theorem. Moreover, we
give a direct proof that F,|GL,] is a Hopf subalgebra of F,|GL,], and that

FJGL,)| = Uz(gl,”). We describe explicitly its specializations at roots
q=1

of 1, say €, and the associated quantum Frobenius (epi)morphism from
FGL,] to Fi|GL,] = Uz(gl,") . The same analysis is done for F,[SL,]
and (as key step) for F,[M,].

This lecture is based on joint work with Fabio Gavarini, University Tor Ver-
gata, Rome, ltaly.

On normal and collectionwise normal locally convex
topological vector spaces

E.A. Reznichenko

Department of General Topology and Geometry, Faculty of Mechanics
and Mathematics, Moscow State University, Moscow, 119991 Russia

erezn@inbox.ru

We consider the following question.

Let L be a topological locally convex vector space (LCS). Is it true that
if L is normal, then L is collectionwise normal?

The answer to this question is unknown. The report contains some
particular related results.

Theorem 1. Let X be a convex subspace of an LCS L. Suppose that
one of the following conditions holds:

1) X x X is a normal R-factorizable space;

2) X is a normal R-factorizable space and L is a Lindeldf 3-space.

Then X is collectionwise normal.

Corollary 2. Let X be a linear subspace of an LCS L. Suppose that
one of the following conditions holds:

1) X x X is a normal space and L is a product of Lindelof X-spaces;

2) X is a normal space and L is a Lindeldf 3-space.

Then X s collectionwise normal.
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On intersection of three embedded spheres in 3-space
A. Rukhovich

Kolmogorov College, Dept. of Mathematics, 11 Kremenchugskaya,
121357, Moscow, Russia

alex-ruhovich@mail.ru

We study intersection of two polyhedral spheres without self-intersections
in 3-space. We find necessary and sufficient conditions on sequences x =
1,2, ..., Tn, Y = Y1,Yo,...,Y, of positive integers, for existence of 2-
dimensional polyhedra f,g C R? homeomorphic to the sphere and such
that

e f — g has n connected components, of which can be numbered so that
the i-th component has x; neighbors in f and

e g — [ has n connected components, of which the i-th one has y;
neighbors in g.

Analogously we study intersection of three polyhedral spheres without
self-intersections in 3-space.

See http://arxiv.org/abs/1012.0925

Some new classes of rigid polyhedra

I.Kh. Sabitov

Lomonosov Moscow State University
Faculty of Mechanics and Mathematics,
Demidov Yaroslav State University
Delone Lzboratory of Discrete and Computational Geometry °

A polyhedron P in R" is called flexible if it admits a continuous deforma-
tion keeping its hyperfaces as absolutely rigid (n-1)-dimensional ”plates”
with a variation only of some dihedral angles. If such a deformation doesn’t
exist the polyhedron is said continuously rigid. The question of checking
of rigidity or flexibility of a given polyhedron is one of the main problems
in the metric theory of polyhedra. In our talk we want to indicate two
new classes of rigid polyhedra. The first class is composed by pyramids.
A simplicial polyhedron is called pyramid if it has a vertex (named as
the main one) joined with any other vertex by an edge. We accept this
definition for polyhedra in the space of any dimension. At first we prove

5The work is supported by the Russian Government, project 11.G34.31.0053 and by RFBR, project
10-01-91000ANF
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that in R? there exist pyramids of any topological type, orientable as well
as nonorientable. For pyramids in R",n > 3, we admit that they can be
pseudomanifolds too. Now we want to impose to pyramids some additional
conditions, namely we suppose that

1) From any (n — 1)-dimensional face of a considered pyramid P one
can pass to any other (n — 1)-dimensional face of P by a path intersecting
only interior points of (n — 2)-dimensional facets of P.

2) Let My be a main vertex of a considered pyramid and (M; ..., M; )
be a (n—2)-dimensional facet of P where none of numbers i;,1 < j <n-—1,
is equal to 0. Then the (n — 1)-dimensional tetrahedron with vertices
My, M;,, ..., M;  is not degenerate that is its (n — 1)-dimensional volume
is not equal to O.

We will call pyramids with these properties as pyramaids of class A. For
them we have

Theorem 1 Any pyramid P of class A in n-space is continuously rigid.

The second class of rigid polyhedra is composed by bipyramids or suspen-
sions. A bipyramad or a suspension is a polyhedron containing two vertices
(called poles) which are not joined between them by an edge but both of
them are joined to all other vertices by edges. These two special points
are called poles of the suspension. This definition is valid for polyhedra in
any n-space too. In 3-space there are orientable bypiramids of any topo-
logical genus (S. Lawrencenko) but one can show their existence in the
nonorientable case too. We can prove the following

Theorem 2 Let P be a suspension in R of genus g > 0 and such that:
1) among the faces which are not incident to any pole there is at least one
no degenerate face; 2) on the boundaries of the stars of poles there is no
any connected part which could rotate around the axe passing through the
poles. Then the suspention is continuously rigid.

A generalization of this theorem to high dimensions is as follows:

Theorem 3 Let P be an suspension in R" such that it contains at least a
hyperface not incident to any pole N or S and there is no any part of stars
of the poles admitting a rotation around the axis NS. Then the suspension
15 continuously rigid.
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Infinite-dimensional spaces of probability measures
Yury V. Sadovnichy

Moscow State University, Dept. of Mathematics, Vorobevy Gogy, str.1 ,
Russia

uvs@mail333.com

In [1] there were investigated properties of infinite-dimensionality of
spaces of type F(X), where F : Tych — Tych is a covariant normal
functor and X is a paracompact space. In particular, it was proved that a
space Pr(X) of all Radon probability measures on an infinite paracompact
p-space X is strongly infinite-dimensional. Here we prove stronger versions
of this theorem.

Given a Tychonoff space X let X be its Cech-Stone compactification

and
Pa(X) € PA(X) C Py(X) C P(8X)

be the following subspaces of P(5X):

P(X) = {ne P(BX)

p(K) =1 for some o-compact subset K C X C fX};
PAX) = {ne P(AX):

pu(K) =0 for every compact subset K C 56X \ X};
P(X) = {neP(EX): u(K) =0

for any closed G,-set K C X with K N X = (}.

Theorem. Let X be an infinite Tychonoff space. Then space Pr(X),
P.(X) and P,(X) are strongly infinite-dimensional.
REFERENCES

[1] V.V. Fedorchuk and Yu.V. Sadovnichy Weakly infinite-dimensional spa-
ces and probability measures, Modern problems of math. and mech., MSU,
volume III, issue 2, pp. 139-150.
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The Danto space and normal functors
D.T. Safarova

National University of Uzbekistan named after M.Ulugbek, Uzbekistan,
700174, Tashkent, VUZ Gorodok

rbeshimov@mail .ru

In the work [1], hereditary properties of some cardinal functions of
spaces Og(X) , where Og : Tych — Tych - weakly normal functor act-
ing in the category of Tychonoff spaces and their continuous mappings,
are investigated. It is proved that the functor Og : Tych — Tych doesn’t
preserve the spread, hereditary density, hereditary weakly density, hered-
itary m-weight, hereditary caliber, hereditary Shanin number, hereditary
Lindelof number of Alexandroff arrow.

Let 7 be an infinite cardinal number, X - a topological space and X'
its subspace. The subspace X' is called 7 monolithic [2] in X if for any
A C X' such that |A| < 7 we have [A]y is compact with the weight 7. We
say that X suppresses X'[2] if from A > 7 and A C X', |A| < 2* it follows
that there exists A’ C X such hat [A"] D A and |A"] < .

A topological space is called the Danto space [2] if for each infinite
cardinal number 7 there exists a dense subspace X’ in X which is:

1) 7 -monolithic in itself;

2) 7 -suppressed by the space X simultaneously.

Theorem. Let X be a Danto space and F' : Comp — Comp is a normal
functor. Then ¢(F (X)) = ¢(X), where ¢ € {x,t, hd, hrw, hsh, he, s} .
Here x - character, t -tightness,hd- hereditary density, hmw - hereditary
7 -weight, hsh-hereditary Shanin number, hc- hereditary Souslin number,
s-spread.

REFERENCES

[1]. Beshimov R.B., Safarova D.T. Alexandroff arrow and weakly addi-
tive functional. Odessa, 2010.

[2] Arhangel’skiy A.V. Topological spaces of functions. Moscow: the
Moscow State University. 222 p.

[3] Fedorguk V. V., Filippov V.V. General topology. Basic constructions.
Moscow. Physmathlit. 2006. - 332 p.
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Probability properties of minimal filling topologies
for finite metric spaces

V. Salnikov, A. Ivanov

Moscow State Lomonosov University, Dept. of Mathematics and
Mechanics, Leninskie gory 1, GSP-1, 119991, Moscow, Russia

vs.salnikov@gmail.com

The theory of minimal fillings for finite metric space was introduces by
A.Ivanov and A.Tuzhilin as a generalisation of Shteiner minimal tree and
Gromov minimal fillings problems. A filling G for a finite metric space
(M, p) is a tree-graph (V, E) and a bijection B between elements of M and
subset of V, such that Ymq, ms € Mp(my, me) < dg(B(mq), B(ms)), where
dg(p,q) is the length of the only existing path, connecting verti”es p and
qg. The problem to find a filling with a minimal possible sum of weights
of all its edges is a difficult one, because for the moment there are only
algorithms with the exponential complexity. In this work we introduce
the probability measure on the space of topologies of minimal fillings for a
special case of metric spaces and an algorithm for its computation. These
gives a possibility to find a good approximation of the minimal filling,
solving only a couple of linear-programming problems, corresponding to
the most probable topologies.

On Topologies Generated by x-Suslin Sets
Denis I. Saveliev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and
Mathematics, Department of Mathematical Logic and Theory of
Algorithms. 1, Vorobievy Gory, Main Bldg, Moscow, 119991, Russia

d.i.saveliev@gmail.com

We show that topologies on A\ generated by x-Suslin sets satisfy the
Baire Category Theorem. Consequently, Projective Determinacy implies
that so are topologies on w* generated by effectively projective sets. Using
this we establish some dichotomy theorems concerning o-compactness of
effectively projective sets.
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Index of elliptic operators associated with
diffeomorphisms of manifolds and uniformization

A. Savin, B. Sternin

Peoples’ Friendship University of Russia, Faculty of Natural Sciences, ul.
Ordzhonikidze 3, 117198, Russia

antonsavin@mail .ru, sternin®@mail.ru

Let M be a smooth manifold and g : M — M be a diffeomorphism. We
develop elliptic theory for operators of the form

D =Y DiT*: C*(M) — C*(M). (1)
k

Here T is the shift operator Tu(z) = u(g(x)) along the orbits of g, Dy, are
pseudodifferential operators (¢»DO) on M, and the sum is assumed to be
finite. We obtain an index formula for operators of the form (1) in terms
of topological invariants of the manifold and of the symbol of the operator
using a new approach called pseudodifferential uniformization. The idea
of this approach is to replace the operator (1), which is not local, by an
elliptic pseudodifferential operator with the same index and then apply
the celebrated Atiyah—Singer formula. We note here that the symbol of
operator (1) is an element of the crossed product C*°(S*M) x Z of the
algebra of functions on the cosphere bundle by the action of the group
Z.. Therefore, the final index formula is naturally formulated in terms
of equivariant characteristic classes in cyclic cohomology of the crossed
product.

References

[1] A. Savin, B. Sternin Index of elliptic operators for a diffeomorphism.
arXiv:1106.4195, 2011.
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On continuous choice of continuous retractions onto
nonconvex domains

P.V. Semenov
Department of Mathematics, Moscow Clity Pedagogical University
pavels@orc.ru

Typically, a creation of ” generalized convexities”, is usually related to an
extraction of several principal properties of the classical convexity which are
used in one of the key mathematical theorems or theories and, consequently
deals with analysis and generalization of these properties in maximally
possible general settings.

Principally another approach deals with a controlled omission of con-
vexity in a set of basic theorems of multivalued analysis and topology.
Roughly speaking, to each closed subset P C B of a Banach space one can
associates a numerical function, say ap : (0,+00) — [0,2), the so-called
function of nonconvexity of P. The identity ap = 0 is equivalent to the
convexity of P and the more ap differs from zero the ”less convex” is the
set P.

Such classical results about multivalued mappings as the Michael selec-
tion theorem, the Cellina approximation theorem, the Kakutani-Glicksberg
fixed point theorem, the von Neumann - Sion minimax theorem, etc.
are valid with the replacement of the convexity assumption for values
F(x), x € X of a mapping F' by some appropriate control of their func-
tions of nonconvexity. Usually such a control means that ap is ”less” than
1. In this case the set P is said to be paraconverz.

In comparison with usual ideas of ”generalized convexities”, we never
define in this approach, for example, a ” generalized segment” joining x € P
and y € P. We look only for the distances between points z of the classical
segment [z, y| and the set and look for the ratio of these distances and the
size of the segment. So the following natural question arises immediately:
Does paraconvexity of a set with respect to the classical convexity structure
coincide with convexity under some generalized convexity structure?

At this talk I provide an affirmative partial answer by using a suitable
continuous choice of a retractions onto a paraconvex sets.

(The author was supported in part by the RFBR grant 11-01-00822.)
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Minimal linear Morse functions on the orbits in Lie
algebras

Vladimir Shmarov

Moscow State University, Department of Mechanics and Mathematics,
Leninskie gory, 1, Moscow, Russia

smarovvladimir@yandex.ru

We consider the compact connected Lie group G and its linear repre-
sentation in real linear space V. Then we consider some linear functional
h on V and its restriction to some orbit of the representation of G. We
shall deal with the following hypothesis: in the general case (which intend
that h is the Morse function on the orbit) h is the minimal Morse function
on the orbit; it means that for every k the quantity of critical points with
index k equals to k-th Bettie number of the orbit. We shall prove this
hypothesis in the following case: G is semisimple, representation is adjoint
and the orbit is regular. In addition we shall describe the set of critical
points and the kernels of Hessian of linear function on the orbit in the case
of arbitrary representation.

[1] @omenko A.T. duddepenrmanbaas reomerpusi u Torosorus. [omos-
HuTebHbIe TJ1aBbl. VxkeBcK: VxkeBckast peciryO/inkancKast Tuiorpadus, 1999.
|2] Subhash B. Linear Morse functions. Bombay: Indian institute of technology,
2009. [3] Bunbepr 9.B., Ouumuk A.JI. Cemunap no rpynmnam Jlu u ajredbpa-
maeckuM rpymmnam. Mocksa: Hayka, 1988. [4] Humphreys J.E. Introduction
to Lie algebras and representation theory. New York: Springer-Verlag, 1978.
[5] Borel A. Sur la cohomologie des espaces fibres principaux et des espaces
homogenes de groupes de Lie compacts. Ann. Math., 57, 115 — 207, 1953.
|6] Coxeter H.S.M. The product of the generators of a finite group generated
by reflexions. Duke Math. Journ., 18, 765 — 782, 1951.
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On the number of complement regions in
submanifold arrangements

I. Shnurnikov

Lomonosov Moscow State University, Dept. of Mathematics, Moscow,
119991, Leninskie gori Str., 1
Yaroslavl State University, Delone Laboratory of Discrete and
Computational Geometry, Yaroslavl, 150000, Sovetskaya str. 14

shnurnikov@yandex.ru

Let us consider m—dimensional manifold M and the finite family { A, .. .,
A, } of closed (m — 1)—dimensional subsets. Let

£ =m0\ 4)

be the connected components number of the complement in M to the union
of Ay, ..., A,. Let F,,(M) be the set of numbers f for all possible arrange-
ments of n subsets given type. The general question is to describe the sets
F,(M) for arrangements of closed geodesics or totally geodesic surfaces
in M. The sets F,(M) could be interesting in connection with Orlic and
Solomon [1] statement that the region number in hyperplane arrangements
equals to the cohomology ring dimension of the complement to complexi-
fied arrangement. N. Martinov [2] founded the sets of region numbers in
real projective plane arrangements of lines and arrangements of pseudo-
lines. Hence the sets of region numbers in standard sphere arrangements
of big circles are also known.

Theorem. Let us consider arrangements of (m — 1)—dimensional flat
subtori in the m—dimensional flat torus 7", arrangements of closed (non—
simple) geodesics in the flat Klein bottle K L?, arrangements of closed
simple geodesics in the surface R of the tetrahedron, arrangements of hy-
perplanes in the hyperbolic metric of Lobachevsky space L and finally
hyperplane arrangements with empty intersection of all hyperplanes in the
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real projective space P™. Then

F.(T™2>{n—-m+1,....n}U{leN|I[>2(n—m)} (1)
Fy(KL*) ={n+1}UFE,(T? forn>2, F(KL*) =N,
F,(R)C{n+1,2n}u{leN|l>4n—6} forn >3, (2)

F (L™ = {feN | n+1§f§i§;<?)}

first four numbers of F,,(P™) for n > 2m + 5 and m > 3 are:
(n—m+1)2""1 3(n —m)2™ 2 (3n — 3m + 1)2" 2 7(n — m)2™ 3.

The inclusion (1) turns into equality at least for two—dimensional tori.
The inclusion (2) turns into equality iff all tetrahedron faces are equal
acute—angled triangles.

References.

[1] P. Orlic, L. Solomon, Combinatorics and topology of complements
of hyperplanes. // Inventiones Math. 50 (1980), 167 — 189.

[2] N. Martinov, Classification of arrangements by the number of their
cells // Discr. and Comput. Geom., 9 : 1 (1993), 39 — 46.

When the set of links is finite?
M. Skopenkov

Institute for information transmission problems of the Russian Academy
of Sciences, Bolshoy Karetny 19 building 1, Moscow, 127994, Russia

skopenkov@rambler.ru

This talk is on a joint work Diarmuid Crowley and Steven C. Ferry.
Let m and p1,...,p, < m — 2 be positive integers. The set of links of
codimension > 2, E™(L;_,5), is the set of smooth isotopy classes of
smooth embeddings Uj_;S? — S™. Haefliger showed that E™ (L _,S"*)
is a finitely generated abelian group with respect to embedded connected
summation and computed its rank in the case of knots, i.e. r = 1. Forr > 1
and for restrictions on pq,...,p,. the rank of this group can be computed
using results of Haefliger or Nezhinsky. Our main result determines the
rank of the group E™(L;_;SP) in general. In particular we determine
precisely when E™(L;_,SP*) is finite. We also accomplish these tasks for
framed links. Our proofs are based on the Haefliger exact sequence for
groups of links and the theory of Lie algebras. The speaker was supported
in part by President of the Russian Federation grant MK-3965.2012.1, by

73



“Dynasty” foundation, Simons-IUM fellowship, and grant RFBR-12-01-
00748-a.

Interval identification systems of order 3 and plane
sections of triply periodic surfaces

A. Skripchenko

Lomonosov Moscow State University, Dept. of Geometry and Topology,
Faculty of Mechanics and Mathematics, Leninskie gory GSP-1, Moscow,
119991, Russia

sashaskrip@gmail.com

The notion of interval identification systems is a generalization of in-
terval exchange transformations and interval translation mappings. The
same objects have also appeared in the theory of R-trees as an instrument
for describing the leaf space of a band complex. We study dynamical prop-
erties of such systems (including behavior of orbits) and applications of
interval identification systems of order 3 to remaining open questions in
Novikov’s problem of asymptotic behavior of plane sections of triply peri-
odic surfaces. Our main tools include the Rauzy induction and the Rips
machine for band complexes.

Closed locally minimal networks on the surfaces of
convex polyhedra

N. Strelkova

Moscow State University, Dept. of Differential Geometry and
Applications at the Mechanics and Mathematics Faculty, Leninskie gori
str. 1, Moscow, 119991 Russia,
and Yaroslavl State University, Delone Laboratory of Discrete and
Computational Geometry, Sovetskaya str. 14, Yaroslavl, 150000 Russia

n.strelk@gmail.com

A network is a geometric realization of an abstract graph, i.e. the ver-
tices are represented by some points in a metric space and the edges are
represented by curves connecting the corresponding points. If for each
point of a network there is a neighborhood such that the network cannot
be shortened by a deformation in this neighborhood then by definition the
network is a locally minimal network. In the case of convex polyhedra this
definition is equivalent to the following one.
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Definition. A network on a convex polyhedron is called closed locally
manimal if all the edges of the network are geodesics and at each node of
the network precisely three edges meet at angles of 120°.

What conditions are necessary and sufficient for a polyhedron to have
a closed locally minimal network? There is no full answer. I present some
related results. (This question is also open in the case of closed geodesics,
but I do not touch this case.)
Theorem.(Ivanov, Tuzhilin, 1994) Suppose there exists a closed locally
minimal network on polyhedron P. Then there exists a partition of the
vertex set of P into several subsets such that in each subset the total
Gaussian curvature of the vertices equals %” for some kK =1,...,5, where
k may be different for different subsets.
Theorem.(Strelkova, 2011) There exists a tetrahedron ABC'D with no
closed locally minimal networks, though the curvatures are K4 = 5?”, Kp =
%ﬂ, Ko+ Kp = %ﬂ
Theorem.(Strelkova, 2012) Fix any positive integers ki, ..., ks such that
k1 +...4+ ks =12, and denote by M the set of all polyhedra with exactly
s vertices and curvatures I“T”, e kg” at the vertices. Then there exists an
open dense subset My C M such that on each polyhedron from M, there
exists a closed locally minimal network.

Local Index Theorem.
Nicolae Teleman

Universita’ Politecnica delle Marche, Dipartimento di Scienze
Matematiche 1 Via Brecce Bianche, Ancona, 60131, Italia

teleman@dipmat.univpm.it

It is well known that the cyclic (co)-homology of Banach algebras as-
sociated to topological spaces do not reflect well the spaces themselves.
Different solutions were proposed to obtain meaningful results in this case.
One solution is due to A. Connes, who introduced entire cyclic co-homology
for Banach algebras. His definition of entire co-homology is based on a
growth condition of the norm of the infinite components of the co-chains
over the algebra. This definition fits perfectly with the Novikov conjecture
problem on manifolds with hyperbolic fundamental group. A different so-
lution is due to M. Puschnigg, who introduced the notion of local cyclic
homology of Frechet algebras; his construction is based on the system of
pre-compact subsets of the algebra. In this lecture we introduce a new
notion of local cyclic homology based on the supports of the chains. We
show that this notion adapts naturally to the case of smoothing operators
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on smooth, Lipschitz or quasi-conformal manifolds and allows one to re-
interpret the Connes-Moscovici local index theorem. Our notion of local
cyclic homology inserts into the Hochschild and cyclic complex (over the
algebra of smoothing operators) the ideas of the Alexander-Spanier homol-
ogy construction. For any pseudo-differential elliptic operator on a smooth
manifold, our definition of local cyclic homology allows one to relate in
a more transparent way the Connes-Karoubi-Chern character, associated
to the operator, with the Alexander-Spanier homology of the space. To
do this, we construct a homological Connes-Karouby-Chern type charac-
ter based on the residue smoothing operator R = P - e, where P and e
are idempotents; the operator R was defined by Connes-Moscovici in their
original paper at p. 353. Our Connes-Karoubi-Chern type character lives
in the cyclic complex of the algebra of smoothing operators localized to
the separable ring L = C 4+ Ce. In the second part of the lecture we
compute the local Hochschild homology of the algebra of Hilbert-Schmidt
operators on locally compact countable homogeneous simplicial complexes
and we explicit the parallelism between our definition of local Hochschild
homology with the Alexander-Spanier homology.

Hirzebruch genera on homogeneous spaces
S. Terzic

University of Montenegro, Faculty of Natural Sciences and Mathematics,
Dzordza Vasingtona bb, Podgorica, 81000, Montenegro

sterzic@ac.me

We aim to present how the notion of universal toric genus can be applied
in the case of homogeneous spaces to obtain the important results on some
famous Hirzebruch genera such as Krichever genus, signature, elliptic genus
and any genus defined by an odd power series.

Universal toric genus can be defined for any stable complex manifold
with an equivariant torus action. It as an element of the complex cobordism
ring of the classifying space of the acting torus. When the torus action has
only isolated fixed points the toric genus can be localized meaning that
it can be expressed in terms of signs and weights at the fixed points for
the given torus action. When composed with a Hirzebruch genus, the
toric genus gives arise to an equivariant genus which carries important
information, such as rigidity or even triviality, on the initial Hirzebruch
genus.

We explain how this approach can be used in the case of compact homo-
geneous spaces of positive Euler characteristic equipped with the canonical
action of the maximal torus and an invariant almost complex structure. We

76



prove that Krichever genus is rigid for this action just using representation
theory for Lie groups. We also prove using representation theory that any
Hirzebruch genus given by an odd power series is trivial on a large class of
homogeneous spaces what then holds for the signature, fl—genus and the
elliptic genus as well.

The talk is based on the joint work with Victor M. Buchstaber (Toric
genera of homogeneous spaces and their fibrations, International Mathe-
matics Research Notices, 2012).

Torsion in gauge groups
Stephen Theriault
Institute of Mathematics, University of Aberdeen, Aberdeen AB24 3UE,
United Kingdom
s.theriault@abdn.ac.uk

Let M be a simply-connected 4-manifold, let P — M be a principal
SU(2)-bundle, and let G(P) be the gauge group of this principal bundle.
For p an odd prime we calculate the mod-p homology of the classifying
space of G(P) in many cases, including when M = S*. These calculations
are of interest to mathematical physics and Donaldson theory.

Computing dimensions by the experimental data
E.A. Timofeev

Yaroslavl State University, Dept. of Computer Sciences, 14, Sovetskaya
Str., Yaroslavl, 150000, Russia

TimofeevEAQgmail.com

Statement of the problem. Let {2 be a compact metric space with
a metric p. Let p be a Borel probability measure on 2. Let &g, &1,...,&n
be independent random variables taking values in €2 and identically dis-
tributed with a common law p.

We want to evaluate the reciprocal of the dimension of pu.

The aim of this research is to construct an estimator to achieve effi-
ciency O(n™°) for some measures, where ¢ > 0 is a constant.

The estimator is defined as follows:

m) =k () =), (1)

n

7



where

=) = —— =3I (f.,nin. <’“)p<m>(€z’a€j)> 7 (2)
J

and we have just introduced the following notation: for any ordered set x1 <
Ty < --- <N, min(’“){azl, ...,xy} is defined to be xy.

Euclidean spaces. Let () be an s-dimensional compact manifold in
R?. Let u be a Lebesgue probability measure on €. In [1] was shown that
the variance and the bias of the estimator (1) has the order O(n™¢), if the
measure of any ball is the smooth function, where ¢ > 0 is a constant.

Sequence spaces. Let 2 = A" be a space of all right-sided infinite
sequences drawn from a finite alphabet A, where N = {1,2,...}. Let u be
a shift-invariant probability measure on €2 and p(x,y) be a metric on 2.

If p is bi-Lipschitz equivalent to the metric (3), where A(¢) = 0, then
the estimator (1) is the estimator of the reciprocal of the entropy.

In [1] was also shown that the variance of the estimator (1) has the
order O(n™°) for certain classes of measures and metrics, where ¢ > 0 is a
constant.

However, the problem of finding the bias is much more difficult. In [2]
considered the estimator (1) for the metric (3), where A(¢) = 0, and Markov
measures and proved that the estimator (1) asymptotically unbiased only if
the logarithms of some transition probabilities are rationally incommensu-
rable. The bias was a periodic function with a period proportional to logn
if the logarithms of transition probabilities are rationally commensurable.

Thus, the efficiency of the entropy estimator is determined by metric’s
properties. We introduce a new metric on 2

6_1 i\, ) a = ba
p(aw7 by) - { e—)\(p—(ln,o(g,zj))7 a # b’ (3>

where A(t) = min{l, 5t} and 0 < § < 1; and prove that for a Bernoulli
measure 4, there exist S such that

lim En® = 1/h,

n—oo

where h is the entropy of p and k is a constant.
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Burau and Jones representations of braid groups —
the relation

P. Traczyk

Warsaw University, Dept. of Mathematics, ul. Banacha 2, 02-097,
Warszawa, Poland

traczyk@mimuw.edu.pl

The famous Burau representation of braid groups is given in its classic
version as a matrix representation. The Burau representation is known to
have the same kernel as that of a certain weak version of the Jones represen-
tation (into the Temperley-Lieb algebra). In fact the two representations
are practically the same mathematical object — if properly understood.
We will discuss how the Temperley-Lieb version may be used to study the
original Burau reperesentation.

Reidemeister numbers for residually finite groups
E.V. Troitsky

Dept. of Mech. and Math., Lomonosov Moscow State University, 119991
Moscow Russia

troitsky@mech.math.msu.su

We prove for residually finite groups the following long standing con-
jecture: the number of twisted conjugacy classes (¢ ~ hgp(h™!)) of an
automorphism ¢ of a finitely generated group is equal (if it is finite) to
the number of finite dimensional irreducible unitary representations being
invariant for the dual of ¢.

Also, we prove that any finitely generated residually finite non-amenable
group has the R, property (any automorphism has infinitely many twisted
conjugacy classes). This gives a lot of new examples and covers many
known classes of such groups.

The research was partially supported by RFBR Grants 10-01-00257-a
and 11-01-90413-Ykp-¢-a and Grant 2010-220-01-077 (contract
11.G34.31.0005) of the Russian Government.

The talk is based on a joint paper with A.Fel’shtyn (arXiv: 1204.3175).
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Complex geometry of moment-angle-complexes
Y. Ustinovskiy
RAS Steklov Mathematical institute, 8 Gubkina str., Moscow 117966,
Russia
yuraust@gmail.com

In this talk we associate compact manifold Zx to every simplicial com-
plex K, and construct complex structure on it. This manifolds generalise
well-known Hopf and Calabi-Eckman manifolds. We discuss complex ge-
ometry of these manifolds, in particular we describe their Dolbeault co-
homology, field of meromorphic functions and complex submanifolds.

Countable Dense Homogeneity
J. van Mill

VU University Amsterdam, Department of Mathematics, De Boelelaan
1081, 1081 HV Amsterdam, the Netherlands

j.van.mill@vu.nl

We prove that a connected, countable dense homogeneous space is n-
homogeneous for every n, and strongly 2-homogeneous provided it is lo-
cally connected. We also present an example of a connected and countable
dense homogeneous space which is not strongly 2-homogeneous. We prove
that a countable dense homogeneous space has size at most continuum.
If it moreover is compact, then it is first-countable under the Continuum
Hypothesis. We also construct under the Continuum Hypothesis an ex-
ample of a hereditarily separable, hereditarily Lindelof, countable dense
homogeneous compact space of uncountable weight. We also discuss lo-
cally compact separable metrizable spaces with a finite number of types of
countable dense sets and prove a structure theorem for them. Some of the
presented results were obtained with A.V. Arhangelskii and M. Hrusak.
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Generalized Cantor manifolds
V. Valov

Nipissing University, Dept. of Computer Science and Mathematics, 100
College Drive, North Bay, ON, P1B SL7, Canada

veskov@nipissingu.ca

The connection between generalizations of Cantor manifolds and homo-
geneous continua will be discussed. Some result concerning the question
whether any homogeneous metric continuum is a V(n)-continuum in the
sense of Alexandroff will be also presented.

Cyclic generalizations of hyperbolic 3-manifolds
constructed from regular polyhedra

A. Vesnin

Sobolev Institute of Mathematics, pr. ak. Koptyuga, 4, Novosibirsk
630090, Russia

vesnin@math.nsc.rub

Various examples of three-dimensional spherical, Euclidean, or hyper-
bolic manifolds arise from pairwise isometrical identifications of faces of
convex regular polyhedra in the corresponding 3-spaces: S?, E3, or HP.

There are eight manifolds, arising from a regular hyperbolic dodeca-
hedron with dihedral angled 27 /5. One of them is the Weber — Seifert
manifold (1933) that is the 3-fold cyclic branched covering of S branched
over the Whitehead link. Also, there are six manifolds, arising from a
regular hyperbolic icosahedron with dihedral angles 27/3. One of them is
the Fibonacci manifold, uniformized by the Fibonacci group F'(2,10), is
the 5-fold cyclic branched coverings of S, branched over the figure-eight
knot. Cyclic generalizations of above manifolds were investigated by many
authors.

Two other manifolds, arising from a regular 27 /3-icosahedra, can be pre-
sented as 3-fold cyclic branched coverings of the lens space L(3,1). Cyclic
generalizations of these manifolds are constructed and studded in [1,2].

The method from [1] gives a way for a polyhedral construction for n-fold
cyclic branched coverings of lens spaces L(p,q). Conditions for existence
of cyclic branched coverings of 3-manifolds were obtained in [3].

In the present talk we will discuss results and methods from [1] and [2].

6Supported by RFBR (grant 10-01-00642) and by the grant for Russian Leading Scientific Schools
(NSh.-5682.2012.1).

81



References

[1] A. Vesnin, T. Kozlovskaya, Branched cyclic coverings of lens spaces,
Siberian Math. J., 52(3) (2011), 426-435.

[2] P. Cristofori, T. Kozlovskaya, A. Vesnin, Cyclic generalizations of two
hyperbolic icosahedral manifolds, Topology and its Applications, 159(8)
(2012), 2071-2081.

[3] P. Cristofori, M. Mulazzani, A. Vesnin, Strongly-cyclic branched cover-
ings of knots via (g,1)-decompositions, Acta Math. Hungarica, 116(1-2)
(2007), 163-176.

Geometrical realization of y-vectors of 2-truncated
cubes.

V. Volodin
Steklov Mathematical Institute
volodinvadim@gmail . com

The talk is devoted to the family of combinatorial polytopes that can
be obtained from a cube by sequence of truncations of codimension 2 faces
(below called truncated cubes). Every 2-truncated cube P is a flag sim-
ple polytope and it was shown that there exists a flag simplicial com-
plex Ap such that f(Ap) = v(P). Therefore, vy-vectors of 2-truncated
cubes satisfy Frankl-Furedi-Kalai inequalities. The class of 2-truncated
cubes include many well-known classes of simple polytopes (flag nestohe-
dra, graph-associahedra and graph-cubeahedra). It was shown that 7-,
g-, h-, f-vectors of associahedra, cyclohedra, permutohedra and stellohe-
dra are the sharp bounds for v-, g-, h-, f-vectors of certain subclasses of
graph-associahedra.

References
1. V.M.Buchstaber, V.D.Volodin Combinatorial 2-truncated cubes and
applications, Associahedra, Tamari Lattices, and Related Structures, Tamari
Memorial Festschrift, Progress in Mathematics, Vol. 299, pp 161-186, 2012.
2. B.JI. Bosnogun, [eomempuueckas peasudayus y-6eKmopos KomoOuMa-
mophux 2-ycevennux kyoos, YMH 2012 (B neuarn).

The work was partially supported by RFBR grants 11-01-00694 and 12-
01-92104.
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Cohomology of Lie algebras of vector fields on
orbifold S'/Z,
E.A. Volokitina
Saratov State University

Let S! be the unit circle in the complex plane. I.M. Gelfand and D.B.
Fuchs proved that the cohomology algebra of the Lie algebra of vector
fields on S! is isomorphic to the tensor product of the polynomial ring with
one generator of degree two and the exterior algebra with one generator of
degree three. We compute the cohomology of the Lie algebra of vector fields
on the one-dimensional orbifold S! /Zy, where Z, acts on S ! by reflection in
the Oz axis and S1/Z5 is the orbit space. We prove that the cohomology
algebra of the Lie algebra of vector fields on S'/Z, is isomorphic to the
tensor product of the exterior algebra with two generators of degree one
and the polynomial algebra with one generator of degree two.

The considered Lie algebra is a subalgebra of the Lie algebra of vector
fields on S!. It should be noted that the Gelfand-Fuchs generators vanish
under the restriction to the subalgebra.

Minimal sets of conformal foliations
N.I. Zhukova

Nizhny Novgorod State University, Dept. of Mechanics and Mathematics,
Gagarin ave., 23, Nizhny Novgorod, 603163, Russia

n.i.zhukova@rambler.ru

New our results will be presented on the investigation of the structure
of conformal foliations.

Let (M, F) be an arbitrary smooth foliation. Remind that a subset of
a manifold M is called a saturated whenever it is the union of some leaves
of a foliation (M, F). A nonempty saturated subset 9T of M is called a
minimal set of (M, F), if each leaf from 91 is dense in 9. The leaf L of a
foliation (M, F) is called closed if L is a closed subset of M. Any closed
leaf of (M, F) is a minimal set.

By definition, an attractor of a foliation (M, F) is nonempty saturated
subset M, if there exists a saturated open neighborhood Attr(M) such
that the closure of every leaf from Attr(M) includes M. If an addition
Attr(M) = M, then the attractor M is called global.
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We have proved that every codimension ¢ > 3 conformal foliation
(M, F) either is Riemannian or has a minimal set that is an attractor
of (M, F), and the restriction of the foliation to the attraction basin is a
(Conf(S7), S?)-foliation. We do not assume that M is compact.

We have shown that each proper non-Riemannian codimension ¢ > 3
conformal foliation has a closed leaf that is an attractor.

Sufficient conditions for the existence of a global attractor of a confor-
mal foliation has been found. The structure of the global attractors and
foliations (M, F) have been investigated.

We have proved also that every conformal foliation (M, F) on a compact
manifold M either a Riemannian foliation or a (Conf(S7), S9)-foliation
with a finite family of attractors. They are all minimal sets of this foliation.

Examples of conformal foliations with exceptional and exotic global at-
tractions are constructed.

This work was supported by the Russian Foundation for Basic Research,
grant N 10-01-00457.

Some properties of quotient functors
T.F.Zhurayev

Tashkent State Pedagogical University, Uzbekistan 100100, Tashkent,
Yusuf Khos Hojib str.103

rbeshimov@mail .ru

In the paper it is shown that if we consider the functor F' under the
natural restrictions then property of being approximated from within by
Tominaga class K of metric compact is preserved for F'(X) and class F/(K).
Here the functor F' acts in the category Comp.

Definition. It is said that the compact X is strongly approximated
from within by Tominaga class K if there exists a sequence C7 C Cy C

. C X, C; € K such that X = |JC; and satisfied conditions: for any
e > 0 there exists C; and the mapping f. : X — X such that for any
s > j the restriction f.|c, : Cs — Cj is continuous and p(z, f-(z)) < €
for any z € C,, where p is a metric of X; for any x € ((X) there exists
neighborhood U, such that its component of connectedness containing x is
contained in some C;

Example. The Warsaw circle is an example of the space satistying the
definition, where class K consists of segments.

Theorem [1]. If the compact X is approximated on the class of Peano
continua with a fixed point property then the compact X has fixed point

property.
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Theorem. Let F' be the space of quotient functors of finite degree n[2].
If compact X is strongly approximated from within by Tominaga class K
of Peano continua then the compact F'(X) is strongly approximated from
within by Tominaga class F/(K).

Corollary. If the condition of theorem is satisfied and F(K) consists
of Peano continua with the fixed point property then F'(X) possesses the
fixed point property

REFERENCES

1. A.Tominaga. The fixed point property for continua approximated
from within by Peano continua with this property. Proc. Amer. Math.
Soc., 1964, vol.91, No. 3, pp. 444-448.
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Univ. Carolinae, 42, 3 (2001), pp. 561-573

Geometry of Dold Manifolds

P. Zvengrowski

University of Calgary, Department of Mathematics and Statistics,
Calgary T2N 1N4, Alberta, Canada

zvengrowQucalgary.ca

Dold manifolds are smooth manifolds that were introduced by Dold to
obtain a family of generators for the unoriented cobordism ring. Specifi-
cally, P(m,n) is the m + 2n dimensional smooth manifold that is obtained
as the identification space of S x CP" under the action of the fixed point
free involution  7(z, |20, 21, ..., 2,)) = (—x,[Z0, 21, .., 2n|). For example,
P(m,0) is the familiar RP™. In this talk we will discuss new contribu-
tions to the geometry of these manifolds, specifically to the questions of
their span and parallelizability, that are due mainly to J. Korbas and his
student P. Novotny. Similar questions for other families of manifolds that
generalize the real projective spaces will be briefly discussed.

About correct solvability for the nonlinear equations
A. Zvyagin, V. Zvyagin

Voronezh State University, Dept. of Mathematics, 1 University Sq.,
Voronezh, 394006, Russia

zvgOmath.vsu.ru

The concept of the correct (Hadamard) solvability for linear equations
is well known (see, for example, [1]). In the present report the analogue
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of this concept is constructed for the nonlinear equations. As an example
it is considered the initial-boundary problem for the quasilinear parabolic
equation.

Definition: Let X, Y be topological spaces, f: X — Y - mapping and
y € Y - be the fixed element.The nonlinear equation

flz) =y (1)

will be correctly solvable, if for any open neighbourhood U of the set of
solutions of the equation (1) in X there is an open neighbourhood V' of the
point y in Y such that for any ¢y € V the set of solutions of the equation
f(x) =9/ contains in U.

The establishment of the fact that the equation is correctly solvable is
important for research the problems described by this equation.

Theorem: If X,Y - metric spaces, then for any continuous proper
mapping f: X — Y the equation f(x) =y is correctly solvable.

Let’s consider a initial-boundary problem. Let €2 be a bounded domain
of R" with smooth border 9€2. Let T > 0 be arbitrary number, Qr =
(0,7) x 2.

ov i v ov . v ov ov
A, i'ta sy Uy ot t) sy Uy vty :ht7 )
ot Z,jz:laj( Y 0xq 6%)6:@8% +g(tz,v ox, &r:n) (t, )
(2)
ov ov . .
where (¢,2) € Qr and a;;(t,x,v, =—, ..., =—) - continuous on all variables,
ox ox,,
v(t,x) =0, (0<t<T,xe€df), (3)
v(0,7) = vo(z), 7€, wvylon=0. (4)

Theorem: The operator equation corresponding to the initial-boundary
problem (2) - (4) for the quasilinear parabolic equation in the presence of
a priori estimate is correctly solvable.
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OO0 obmieM Bujie paBHOMEPHO HEITPEePLIBHOTO
dyHKkmoHasa Ha C)-IIpOCTPaHCTBe

A. Apbur

Tomckuit rocynapcTBeHHDIH 11€arorudecKkuii YHUBepCUTET, Kagpeapa
Pa3BUTHSI MaTeMaTHIeCKOro obpa3oBaHus, 1p. KoMcoMoJIbCKHit, 75, T.
Tomck, 634034, Poccuiickass Peneparims

arbit@mail.tsu.ru

TemaTnka HpecTaBigeMoii pabOThl OTHOCHTCA K Tak HasbiBaeMoil O
Teopun, 0ObEKTOM H3yUeHUs KOTOPOil siBjsiercs rpoctpanctso Cp(X) Beex
HEIIPEPLIBHBIX BEIIEeCTBEHHO3HAUHBIX (PYHKINI Ha mpocrpancTBe X, Haje-
JIEHHOE TOIOJIOTHEl MOTOUYEeYHOl CXOAUMOCTH. 37ech 1 jajee X — TUXOHOB-
CKOE IIPOCTPAHCTBO. M3BeCTHO, 9TO JIs KayKI0ro HEeHYJIeBOrO HEeIIPEPbIBHO-
ro JjmHeitnoro gynkiponana | na upocrpancrse C,(X) Haiijyrest KoHed-
iple Muoxkectsa {1, ...,2,F C X un {A,..., A} C R Takue, aro [(f) =
Mf(xy)+ ..o+ A f(x,) mas Beex f € Cp(X). Apyrumn ciioBamu, Haiijiércs
muneitrast pyukiws L : R" — R rakas, aro [(f) = L (f(z1),..., f(z,)). D1a
dbopmysia JeMoHCTpUpYeT 00Nl BIJI HEIPEPLIBHOIO JINHEHHOro (byHKIINOHA-
Jla Ha IIPOCTpaHCTBe Cp(X ) [TocKoIbKY HelpepbIBHBIN JIMHEIHBIH (DyHKIINI-
OHAJI SIBJISIETCSI YACTHBIM CIy4YaeM PaBHOMEDPHO HEIPEPLIBHOTO (byHKIMOHA-
Jla, TO €CTeCTBEHHO BO3HUKAET BOIPOC, KAKUM OyAeT OOl BUJI TIOCIEIHErO.
DTOT BOIPOC UHTEPECEH EIIE U TEM, UTO €0 PEIICHIE MOXKET ObITh M0JIE3HBIM
JIJIs1 TTOJIy Y€HHsT Pe3YJILTaTOB, OIMCHIBAIOIIIX CBONCTRA U-3KBUBAJIEHTHBIX TTPO-
CTPAHCTB.

[Ipexyie yem cchopMy/MpoBaTh IVIABHLIN PE3yIbTaT PAOOTHI, JIa UM eIllé
oo onpejesenne. Yepes Uy, (X)) o6o3HaUNM IPOCTPAHCTBO BCEX PABHOMEDPHO
HeIlpepPbIBHbIX (DYHKINOHAIOB Ha npocrpancrse Cp(X) ¢ Tonosorueii moro-
YEUHOI CXOIUMOCTH.

Teopema. Jlng kaxKjgoro He paBHOrO KOHCTaHTe (DYHKIMOHATIA (© €
U,(X) cymectsytor nocieosarenbuocts {xy} € XN (u1u koneunoe MHOMKe-
ctBo {x1,...,2,} C X) u pasHoMepHO HenpepbisHas Gynkima ¢ : RY — R
(coorBercTBenno ® : R" — R) rakue, 1T0

2) ¢(f) = @ ({f(z)}) (coommercrseno @(f) = B(f(a)- -, ()
st Beex f € Cp(X);

6) Muorosnaunoe orobpazkenne npocrpancrsa Uy(X) B X, crabamiee B
cooTBeTCTBHE KazK/I0My ¢ € Up,(X) MHOXKECTBO 4/IEHOB I10C/IEJ0BATE/ILHOCTH
{z}} (cOOTBETCTBEHHO MHOKECTBO {1, ..., Ty }), TOJYHEIPEPHIBHO CHUZY.
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Bepxnunii neaTpaJjabHbIil P TPYyNIbl MOACTAHOBOK
psiJIoB HAA Zo
C.A. Borarnwrii

Moscow State University, Department of Mechanics and Mathematics,
119991 Moscow, Russia

B 1954 romay Jennings Beén rpyrmiy J(k) BCeBO3MOXKHBIX (OPMATbHBIX
CTEIIeHHBIX PAJIOB IIEPEMEHHON & ¢ KO3 PUIMEeHTaMU B KOJIbIle K, UMEFOIIIX
sl f(z) = (1 + a1w + asz? + ...), ¢ onepalueii NOJICTAHOBKY psijia B DAL,
Obcyxkaercs ciydail kosblia k = Zs. Leedham-Green n McKay Boraucinin
HUZKHUI HEHTPaJIbHBIN psiji 9To# rpynibl. B paboTe BhIYUCISIETCS BEPXHMUI
EHTPAJIBHBII PAJT.

Beeiém ceputo nonamuokects J(Zs), SIBISIIOMUMUCS B HAIIEM CJIydae MO/I-
IpyIIaMu,

J a b C {f 1 -+ Z Oéa+2233a+22 + Z Ui T b+4z n Z Coi i T c+4z ,

J-(a,b,c) {f GJabc):&a:&b:ac},
Jo(a,b,c) = {f EJabc):aa+ozb+ozC=O},

rJie a — He4E€THOE YHCIIo, b — JlesuTest Ha 4, ¢ — 1pu JieJieHun Ha 4 JJaéT 0CTaTOK
2.

Leedham-Green u McKay nokazasm, aro koMmmyTanToM Tpyiibl J(Zs)
sBiistercst moArpytmna J— (3,4, 6). OcraibHble 1IeHbl BEDXHErO MeHTPAIbHOIO
psijia 1oC/Ie10BaTe/IbHO OIUCHIBAIOT

Teopema 1. IIpuc=2a,4 <a+1<b< c—2 Kommymanmom epynnove
J_(a,b,c) asazemcsa epynna Jo(a + b+ 2,¢+ 2a + 4,c+ 2b + 4).

Teopema 2. IIpuc=2a,4 <a+1<b< c—2 Kommymarnmom epynnovt
Jo(a, b, c) asasemesa epynna J—(b+ a,c+ 2a,c+ 2b).

ABHO onmckIBalOTCs PaKTOPbI BEPXHETO IEHTPAJILHOIO Psijia,

Teopema 3. I'pynna J(Zsy) Asazemca epynnot ¢ mpems 00pasyouumu
u omobpastcerue

p: J(Zg) —)ZQ@Zg@Z4 :
o(f) = (a1, a4 + ag + aaay, &F + a3 + 2a3 + 2ay).

ABNACNCA 20MOMOPPUIMOM AOENUHU3AUUL.
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Teopema 4. I'pynna J-(3,4,6) asasemcs epynnoti ¢ wecmvro 06pasiyro-
wumMu U omobpasicerue

01 J_(3,4,6) = (Z,)° @ Zs
o(f) = (045, Q7 + O, 0, 12 + (30, (4 + Q2 + Q7 + 3o,

4(0&9 + 16 + Qi1g + ag + sy + azag + 0480410) + 204% + Oég) .

ABNACTNCA 20MOMOPHUSMOM AOENUHU3AUUL.

O dysKkTOpax co cBoiictBom KareroBa
A.B. IBanos

IlerpozaBojicknit rocyjapCTBeHHBIH YHUBEPCUTET, MaTeMaTH IeCKUIT
¢axkyipret, npocn. Jleauna - 33, r. IlerpozaBosck, Poccust

ivanov@petrsu.ru

Mpr paccMaTpuBaeM TOJIBKO KOBapUaHTHBIE (DYHKTOPBI B KATEIOPUN KOM-
nmakToB. @yukrop F obsajgaer cpoiictBom KareroBa (K -cBOHCTBOM), ecyu
J1st JTE0OOTO KoMTiakTa X HacJIe/ICTBeHHAsT HOpMaTbHOCTE F (X ) Biieder met-
pusyemoctb X. Ilo Teopeme KareroBa o Kybe KomIakTa (DYHKTODP BO3Be-
nenust B kKyO obsagaer K-cpoiicrBoM. Havasio mcciieioBanusiM 10 pacipo-
CcTpaHeHHI0 TeopeMbl KaTeToBa Ha pas/mdHble KJACChl (DYHKTOPOB I10JIO-
x)ut B.B.®emopuyk [1], goxkazasimmii, aro K-cBoiicTBOM 00J18/1A10T BCE HOP-
MaJibHble (PYHKTODPHI crernenn > 3. [lajbHeiilnne pe3yibTaTbl B 9TOM Ha-
npasjennu Obuin nojydensl T.@.2KypaesbiM, A.IT.KombapoBbiM, aBTOpOM,
E.B.Kamy6oit u ap. Bo Bcex ynomMsHyTbIX UCCIEIOBAHUAX Ha (DYHKTOD JF
HaJIaraloTcsd TpebOBaHMA HOPMAJILHOCTU WUJIM TIOJIYHOPMAaJIbHOCTH U, 110 CyTH,
pedb ujer o GyHKTOpax KOHEUHOI CTeleHH.

Hamomuum, 1aTo ¢pyHKTOp F Ha3BIBAETCS 1T0JTYHOPMAJIBLHBIM, €CJIN OH Hellpe-
PBIBEH, COXpaHsieT MOHOMOP(U3MBI, IepecedeHns, TOUKY U IIyCTOe MHOXKE-
crBo. HazoBem dpyHKTOpP F (PUHUTHO MOHOMOPMHBIM, €CJI OH BCIKUIT MOHO-
MOPGU3M KOHEUYHOI'0 KOMITaKTa IIePEeBOAUT B MOHOMOPMU3M. 3aMeTuM, 9T
JII000iT PYHKTOP coxpaHgeT MOHOMOP(HOCTHL OTOOpParKeHUsl KOHEYHOI'O KOM-
aKkTa B HYJbMEpPHBII KOMIIaKT. B To »Ke Bpewmsi, cyliecTByeT He (DUHUTHO
MOHOMOPMHBII HENIPEPBIBHBII (DYHKTOP CTEIeHH 2, COXPAHSIONIUI TOUKY, T1e-
pecedeHust 1 IycToe MHOYKECTBO.

Bynem roBopuTh, 9T0 (PUHUTHO MOHOMOPHBIN (DyHKTOpP JF COXpaHSeT IIy-
CTOE IIepeceveHne, ecJin JJisi JIOObIX JIBYX KOHEUHBIX HEIIePECeKAIOIIIXCS 110/1-
muoxectB A, B C X F(A) N F(B) = (. OxasbiBaercst, 9T0 Jyist GUHATHO
MOHOMOPMHBIX (DYHKTOPOB KOHEUHOIl CTeleH’, COXPaHSIIOMINX TOUYKY U IIy-
CTOE IlepeceveHre, CIPAaBe/IMBbI BCE TOJIyIECHHbIE K HACTOSIIEMY BPEMEHH
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yTBepkKienust o K-cpoiicrBe. B uacrHOoCTH, BepHa Clieylolas Teopema u3
|2]: sr0bGoit Taxoit dyHkTOp cremenn Gosbine 3 obiasgaer K-cpoiicrBom. B
CBSI3U C IOJIYIEHHBIMI Pe3yJibTaTaMi BO3HUKAET psij Borpocos. Hampumep:

Bepno Jin, 9T0 BesAKUT PUHUTHO MOHOMOPMHBII (DYyHKTOP OECKOHEUHOiT
crerienu MoHomopden?

1. ®emopuyk B.B. K reopeme Karerosa o kybe// Becrn. MI'V. Cep. 1.
Maremaruka, mexannka. 1989. N 4. C. 93-96.

2. sanos A.B. CgoiicrBo KareroBa /151 oryHOpMaIbHBIX (GYHKTOPOB/ /
Cubupckuit maremarndecknii xypuas. 2010. . 51.N 4. C. 776-784.

I[Henouncnenubie penieTKN NepeMeHHbIX AeCTBUS JIJIs
cuctem Tuia “Cdepudecknii MasgTHUK”’

E.O. KanTonucrosa

Mockoscknuii I'ocynaperBennsiii Yuuepcurer nm. M. B./Iomonocosa,
Kagespa auggepennuaabaoil reomerpun u npusioxkenuniit, Poccust, Mocksa,
Bopobbesbr roppl, riasHoe 3janue, ays.16—-19

kysin@rambler.ru

[lycrs (M?", w, H) — unTerpupyemMast raMimJIbTOHOBA CHCTEMa C 7 CTelle-
HsIMU cBOOOJIbI, a FY,--- , F, — ee nepsble uaTerpaJnl, rie [y = H. Ilyctb
O = ([, -, F,): M* — R" — omobpaoicerue momenma.

[IycTs cymecrByer u pukcuponana 1-hopma o Ha CBA3HON OTKPBITOI 00-
nactn P?" B M?", takas urto do = w. Ilyerh Bee HeocoOble cion JImysms,
rnonasime B o0sacTb P2, KOMIAKTHBI 1 CBA3HBEL Torga MHOXKECTBO TOYEK
B ®(P?)\X C R", obpaszoBaHHOe IIepecedeHUsIMU 1 OBEPXHOCTel yPOBHsl
{£edP"\S| L(§) =c¢, i=1,---,n, ¢; €Z} dyuknuit I;, oupejeen-
HbIX 110 opmyaam [;(§) = % [ o, te (), ..., () — l-uukibl Ha TOpeE

i
JInysus Tg, obpasytoniue 6asuc rpynust romosornit Hy(T¢) n nenpepsis-
HO 3aBucsiie ot &, o — Kakasi-6o 1-dpopma B U(§), rakas, uro da = w,
HA30BEM UEAOUUCAECHHOT peuemkott R nepemennoir deticmseua (WIn MpocTo
pewemroil).

Cucrema “cchepuyecknii MasTHUK — XOPOIIIO U3BeCTHa. B yacTHOCTH, ISt
Hee aHAJIMTUYCCKH OlNucanbl: pyHKIMs Jlarpanzka, WHTErpasibl JIBUKEHUSI,
s dekTuBHbIN noTeHImas u T.7. OJIHAKO UCCIe/I0BaHIe TONOJOIMIECKIX NH-
BAPUAHTOB 3TOI MHTErPUPYEMOIl CHCTEMBI BCTPEUAETCsSI TOPA3/I0 PexKe, IPH
9TOM aHaJN3 MPOBOINTCS, KaK IIPABIIIO, B CBSI3M C 3aladaMi KBAaHTOBOI (u-
3ukn. B pannoit paboTe MOJIHOCTHIO UCCIE0OBAHA TOMOJJIOTU CUCTEMBI “‘cde-
pudecKiiit MasiTHUK  BbIBeICHBI (DOPMYJIBI JIJIsI IEPEMEHHBIX JICHCTBUS, OIlN-
caHbl KPUBBIC 1 TOYKM, oOpazytolue OudypKaluoHHYIO JuarpaMMy, OlNCaH
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0bpa3 oTobparkeHnsI MOMEHTA, ICCJIeIOBaH THII 0COOBIX ToYeK panra 0, a Tak-
JKe TT0BeJIeHIe JINHN YPOBHS IIepeMeHHbIX JeificTBIs Ha 0bpas3e 0ToOparKeHust
MOMEHTa U IIOCTPOEHA pellleTKa IepeMeHHbIX JieficTBust. [IpuBeien ajaropurm
BBIUNCJIEHHSI 110 PellleTKe MEeTOK U MATPUIb MOHOJIPOMUN HU30JIMPOBAHHOIO
0cO000T0 3HAYCHUSI.

Crmcok anrepaTryphl

[1] Cushman R.H., Duistermaat J.J., The quantum mechanical spherical
pendulum, Bull. Amer. Math. Soc. (N.S.) Volume 19, Number 2 (1988),
475-479.

HpI/IMapHI)Ie Pa3JIOZKEHUA Y3J10B B YTOJIIIIEHHbBIX
IIOBEPXHOCTAX

®.I'. Kopabsésn

YerstbuHCKMIT roCy1apCTBEHHDBI YHUBEPCUTET, MATEMATHICCKUIT
¢akynpret, yi1. Bp. Kamupuapix 129, Hessonrack, 454000, Poccust

korablev@csu.ru

[Iycto K C F' X I — y3ea B YTOIIIEHHON MMOBEPXHOCTH, TO €CTh MPOCTasd
3aMKHyTast KprBasi K B IPSIMOM IPOU3BEJICHUN 3aMKHYTO OPUEHTHPYEMOit
noBepxnoctn F' na orpe3ok [. Ha MHoxkecTBe Bcex TaKMX y3JI0B BBEJIEM TPH
TUIA PEYKITNIL.

Penykius tuna 1. IIycte A C F' X I — nocioitHoe pa3duBaroiee KOoJib-
110, TpaHCBepcaIbHO IiepeceKatomiee y3en1 K C F X I B aByx Toukax. Toria
PeAyKIN THIla 1 COCTONT B pa3pe3aHun MHOroobpasus F X I 1mo xosbity A
1 3aKJIEUBAHUK JIBYX IOJIYUYUBIINXCA KOIMI 9TOrNO KOJIbILA JABYMsl PyUYKaMU
nHjleKca 2 ¢ TPUBMAJLHBIMU JIyraMu B HUX. B pe3syibrare moJydaiorcs JiBa
yana K1 C Fy x I u Ky C Fy x 1.

Penykmusi Tuna 2 (jgecrabuinsaiiis) COCTOUT B pa3pe3aHuil MHOT000-
pasusg F' X [ 1o mocoiffHOMY KOJIbILy, He TepecekatonieMy y3aa K, n 3axe-
UBaHUU JIBYX KOIHUIl 9TOr0 KOJIbIA PYyYKAMU MHEKCa 2.

Penyknua tuna 3. [lycts Ap, Ay — Takag mapa HelepeceKaromnxcst
IOCJIONHBIX KoJiel B F' X I, uTo ux obobenunenune pasousaer F' X I, u yzen K
TpaHCBepca/IbHO IIepeceKaeT KazK0e KOJIbIo B 0JIHOI Touke. Torma pepyKIust
THIa 3 COCTOUT B pa3pesannn MHOroobpasusi F' X I o xosbiiam A1, A Ha 1Be
YAaCTU U CKJIEMBAHUM KOIMI 9TUX KOJIEI[ Ha KpadX dacTeil 110 00paliaioniumM
OpHMEHTAINI TOMeoMOPdU3MaM TaK, 9ToObI MOy YNINCh ABa y3ia K C F) X

I'n Ko CFyx 1.
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B pa6ore [5] 6b110 nokazano, uro ecin ysen K C F x [ aBisgercs roMo-
JIOTHYECKN TPUBHAJBHBIM, TO €TI0 Pa3JIOJKEHIEe B KOJIBIEBYIO CBSI3HYIO CYMMY
IPUMaPHBIX Y3JI0B CYIIECTBYET U €/IMHCTBEHHO. B 001ieM ciiydae elnHCTBeH-
HOCTH HeT, TO €CTh IIPUMeHEeHNe PeJYKITN TUIa 1 K TOMOJIOTNYeCKH HeTpU-
BHAJLHOMY y3JIy MOYKET JaTh Pa3J/iiuHble HAOOPBI IPUMAPHBIX CJIAraeMbIX.
EMHCTBEHHOCTH MOYKHO JIOOUTHLCS 3a CUeT JIAJIbHENIIero pas3JsioxKeHus CJia-
raeMbIX € HOMOINBIO0 peyKiwii Turos 2 u 3. Ciejyiomas TeopemMa Moy deHa
C UCIIOJIL30BAHIEM METOJIOB TEOPHH KOpPHell, paspaboTanHoii B [2].

Teopema 1. [Ipouecc nocaedosamesvrno2o npuMEHEHUA HEMPUBUGALHBLT
pedykuuti munos 1 — 3 x npoussosvromy yary K C F x I xoneuen. Iloayua-
owWutica 6 pe3ysvmame Habop Y306 6 YMOAUWEHHBIT NOBEPTHOCTAL 346U~
CUM MOABKO 0OM UCTOOH020 Y3AA C MOYHOCTNBIO 00 YOANEHUA MPUBUANLHBLT
Y3406 8 YMOAWEHHLLT ChHepax.

Paspemnienne onepalnii jecTadUIN3al MO3BOJIET TEPEHTH OT MHOYKe-
CTBa BCEX Y3JIOB B YTOJIIEHHBIX TOBEPXHOCTAX K €ro (haKTOP-MHOYKECTBY,
KOTOPOE COBIIAIAeT CO MHOXKECTBOM BCEX BUPTYasbHBIX y3i0B |1, 3, 4]. Ilpu
9TOM PeJIyKIIUN TUIIOB 1 1 3 NHYIUPYIOT OePAIINIO CBA3HOTO CyMMUPOBAHUI
BUPTYaJIbHBIX y3J10B. CreayIonuil pe3yibTaT sIBJISeTCs IPIMBIM CJIICTBAEM
TeopeMbl 1.

Teopema 2. /060t supmyarvhoii y3en packaadvi8aemcs 6 CEA3HYI0
CYMMY HECKONDKUL NPUMAPHHLT U MPUBUAALHOLT SUPMYAALHUT Y3.406. 1Ipu
IMOM NPUMAPHBLE CAARZAEMDBLE MAKO20 PA3NOHCEHUA ONPEIENEHDL OOHOZHAUHO,
Mo ecmb 3a6UCAM. MOALKEO 0M UCTOOH020 BUPMYAALHO20 Y3AG.

Crcok anreparyphl

[1] J. Scott Carter, Seiichi Kamada, Masahico Saito Stable
equivalence of knots on surfaces and virtual knot cobordisms // J.Knot
Theory Ramifications. 2002. Vol. 11. P. 311-322.

|2] C. Hog-Angelony, S. Matveev Roots in 3-manifold topology //
Geometry and Topology Monograph. 2008. Vol. 14. P. 295-319.

[3] G. Kuperberg What is a virtual link? // Algebraic and Geometric
Topology. 2003. Vol. 3. P. 587-591.

[4] JI. Kayddman, B.O. MaurypoB Bupryajbhble y3/ibl 1 3allel/IeHs]
// Tpymet MUPAH um. B.A Crekiosa. 2006. T. 252, Nel. C. 114-134.

[5] C.B. MarBeeB Paszjioxkenne roMojiorndecku TpUBUAJIbHBIX Y3J10B B F'X [

// Hoxmagasr Axagemun Hayk. 2010. T. 433, Nel. C. 13-15.
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I'omoTonmyeckue cBoiicTBa AuddepeHnmaIbHbIX
MoayJaei ¢ FlL -CuMILININAJIbHBIMI TPAHAMN

C.B. Jlanuu
Capanck, 430000, Poccus
slapin@mail.ru

[Ipexie Bcero HAItOMHUM, 9TO UMD PEPEHITNATBLHBIM MOJTYJIEM C CUMILIN-
nuaabHbiMu Tpadsamu (X, d, ;) HasbBaror nuddepeHinanbHblii Onrpayn-
posanubiii Moayb (X,d), tie X = {X,n},nm e Z,n>0,d: X,o —
X4e—1, PaccMaTpuBaeMblil BMecTe ¢ ceMeiicTBoM oTobpazkenuil Juddepen-
nuaabHbIX Momyneil 0; @ Xy o = Xpo1e, 0 <4 < n, n > 0, Ha3bIBaeMbIX
CUMILIMITUAJIBHBIMEI TPAHSAME, JJIsi KOTOPBIX BBIIOJJHEHBI CHUMILIAIIAIbHBIE
KOMMYTAIIMOHHBIE COOTHOIIEHUST

8i8j = 83-_1&- : Xn’. — Xn_g’., 1 < j (1)

Bsenem Tenepb nonsTtue auddepeHnnaabHoro MOAY/Is ¢ Floo-CUMILININ-
aJILHBIMU IPaHSIMU, KOTOPOE SIBJISETCS ¢ TOYHOCTBIO JIO BBICIINX T'OMOTOIINI
aHaJIOrOM YKA3aHHOT'O BhbIIIE TOHATUS JIUMPEPEHITNATBLHOTO MOJLYJIsI C CHM-
LTI ATHHBIMI TPAHSIMU.

[Iycts 3amano npousBojibHOe 1etoe unciao n > 0. JIroboit Habop 1esbix
HEOTPUIATEIBHBIX ducest (iy,...,4), rae 0 < iy < «-- < i < n, Oyjgem
Ha3bIBaTh YIOPsI0deHHbIM HabopoM. IlycTh X — cuMmeTpudeckast rpyiia
IEPECTAHOBOK MHOYKECTBA 13 Kk 9JIEMEHTOB, U MYCTh (i1, . . ., 1)) — IPOU3BOJIb-
HBII yIIOpsiiouennbiit Habop. [l1s 1000l iepecTaHOBKN 0 € ), pacCMOTPUM
wabop (o (i1),...,0(ig)), riue o geiictByet Ha HAOOD (i1, . . . , 1)) OOBITHBIM 00~
pa3oM, T.e. IyTeM I1epeCcTaHOBKU YUCEsI U3 9TOro Habopa mectamu. s yka-

_— o

zannoro nabopa (o(i1),...,o0(i)) onpenemnm uadop (o(i1),...,o0(ix)), Tae

o(is) = o(is) —a(o(is)), 1 < s <k, ua(o(is)) — KOIUIecTBO Trces1 u3 Habo-
pa (0(i1),...,0(is),...0(ig)), CTOAMUX ClpaBa OT YUCIA O (i5) U MEHBIINX
ero.

Onpeneiienue. gﬂ(i)(bepeHLH/IaﬂbeIM MOJYJIEM C Fyo-CUMILINIIAIBHBI-
vu rpaasivu (X, d,0) Gygem HasbBaTh juddepeHiaibHblii 6Gurpaynpo-
Banupiit Moyab (X,d), rie X = {X,n},n,m € Z,n > 0,d: X.e —
X e—1, PACCMATPUBAEMBIIT BMeCTe C CeMeiCTBOM 0TOOpazKeHUil MojtyIteit O =
{106,..i0) + Xne = X—piorh—1}, n =0, (i1, .., ) — M00OOI yIOPsOICHHBI
HAOOP, HAZBIBAEMBIX F o -CUMILIUIIAILHBIMU IPAHSIME, JJI KOTOPBIX BBIITOJI-
HEHbI COOTHOIICHUSI

51gn +19 o o
d( (114eey8 Z Z a(a(il),...,a(im))a(a’(iT,L_,_l),...,a(ik))’ (2>

ceyy, Iy
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e

rie I, — MHOM)KeCTBO Beex pasbuenuit mabopa wmncesn (o(iy),...,o(ix)) Ha 1Ba
yropsiodeHabx #Habopa duces (o(iy), ..., 0(iy)) 1 (0(ima1), -, 0(ig)), 1 <
m< k—1.

IIpu k = 1 coornomenns (2) zamuceBaiorca B suje d(d;)) = 0. 910

FOBOPUT O TOM, 4T0 oToOpazkenus J;) @ Xp e — Xp_14, 0 <4 < 0, gABIAIOTCA
oTobpaxkenuamu juddepeHnnaibabix Mojysieit. Ilpu & = 2 cooTHormenus
(2) sammchBAIOTCSA B BHIE

d(a(i,j)) - a(j—1)a(i) - 5(@)3(]'), 1< 7.

DTO O3HAYAET, UTO OTOOparKeHne 8(Z-’j) : X, e = Xj—2, o1 ABJIACTCH FOMOTO-
nueit Mek 1y oTobpaxkKenuamu guddepeHnnaaTbHbIX MOyt

9j-1)0u), 90y + Xne — Xy 24 1, clepoBaTebHO, OTOOPaZKeHust O :
Xne — Xp_1.e YIOBJIETBOPSIOT C TOYHOCTHIO JIO TOMOTOIINH CHMILINIINAIb-
HBIM KOMMYTAIHOHHBIM COOTHOIIEHNIM (1).

BosbImioe KoJm4uecTBO cojiep:KaTesbHbIX IPUMepoB auddepeHnnabHbIX
MOJIyJIeH ¢ Flo-CUMIINIINAJIbHBIMUA TPAHAMI JTOCTABJISIOT 1 depeHnaib-
Hbie A..-anredpol. B camom jeste, mycTth 3agana Jrobdast audepeninmaib-
Hast Ao-anrebpa (A,d,m(n)), tme 7(n) : ((SA)*")e = (SA)e—1, n = 2,
n SA — nazcrpoiika uag A. Ecan nonoxnts X = { X}, tae X, =
((SA)®™)sm, u oupenemnts Fo-cummunuaibibie rpann 0 = {04, . i)
Xne = Xp—ketk—1} DABEHCTBAMHE

Oiit1,...i+k—1) = (=1)°1°0 Y @ r(k+1) @ 1°0F0 1 <i<n—k,

u Ji,, i) = 0 B IPOTHBHOM cilydae, TO IOJIyIuM Juddepennnaibblii Mo-

~

1ysib ¢ Foo-cummmunuasbabivu rpaasmu (X, d, 0).

Mg nnddeperimaibibIX MOLyIel ¢ Flo-CHMILTNIIAJIbHBIMI TPAHSIMI
orpejiesieHbl 1X MOPMU3MbI ¥ TOMOTONNN MexK1y Mopdmmamu. Jlokazana
TeopeMa O MOMOTOINYECKOH MHBAPUAHTHOCTH CTPYKTYPHI AuddepeHinnaib-
HOT'O MOJYJIsI ¢ Flo-CUMILIMITNAIbHBIMUA IPaHsSIMEI, KOTOpasi 0000IIaeT Kjiac-
CHYECKYIO0 TEOPEMY O NOMOTOINYIECKON NHBAPUAHTHOCTH CTPYKTYPHI g de-
PEeHIHAIBHON A o-aIredphi.
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Pazmmmaable HOpMuUpoOBaHHBIE ITPOCTPAHCTBA,
obJiajiaroniye paBHBIMI HabopaMu JIOKAJbHO
MHMHUMAaJIbHBIX CeTell

n.J1. JlayT

Moscow State University, Dept. of Mechnics and Mathematics, 1 Vorobievy
Gory, Moscow, Russia

ilautster@gmail.com

JIoKaJIbHO MUHIMAJIbHBIE CETU Ha MHOTOOOPA3MAX N DAHAXOBBIX TPOCTPAH-
CTBaxX M3Y4JaloTCd CPABHUTEIBLHO JaBHO, U €CTh HECKOJBKO OOIIEU3BECTHBIX
pesyabraroB. Hampumep, B R" ¢ EBkingoBoit HopMmoit Jirobast JJOKAJIBHO MU-
HUMAaJIbHAs CEThb YJIOBJIETBOPSET CJAEIYIONIUM YCJIOBUSIM:

1) Bce pebpa BKJIAIBIBAIOTCS KAK OTPE3KH

2) BCe MOJBIZKHBIE BEPIIMHBI UMEIOT CTEIeHb JiBa WM TPH, U €CJIU CTEleHb
BEPIIMHbBI paBHA JIBYM, TO yI'OJI MEXK/1Yy MHIUJAEHTHBIMU 110/IBUZKHOI BEpIINHE
pebpamu pasen 180°, a ecy Tpem, TO TPHU MHIUJIEHTHBIX IIOJIBUYKHOI Bep-
muHe pedpa JiexKaT B OJIHON TIJIOCKOCTH 1101 yrytaMu 120° 1pyr K Apyry

3) TpaHUYHbIC BEPIIHHBI UMEIOT CTENeHb OJMH, JIBa WM TPH, [PUIEM, eCJIH
CTeleHb BepIINHbI paBHA JIBYM, TO JIBA WHIMIEHTHBIX eif pedpa, cXOIATCS IO
yrioM > 120°, a ecain cTelleHb BEPIINHBI paBHA TPeM, TO, KaK U B CIydae ¢
MIOJIBUZKHOI BEPITUHOM, TPU WHIINIEHTHLIX BePIIHHE pedpa JiesKaT B OJHOI
1j1ockocTu 1o, yriamu 120° apyr K apyry

3BecTHa JOKaIbHAS CTPYKTYPa JIOKAJIHbHO MUHUMAJBHBIX ceTeil m Jjisd
npoctpancTBa R ¢ ManxaTTeHCKO!T HOPMOIT: B HEM TOJABUXKHBIE BEPIITITHBI
SIBJISTIOTCST MeJIUaHAMU TPEX COeJIMHSIEMBIX TOUEK (TO eCTb i-Tasi KOOP/NHA-
Ta TOJIBUXKHOIN TOYKHU SIBJISIETCS MeTUAHON ¢-ThIX KOOPJAUHAT COeIUHAEMbIX
Tovek). B gannON pabore m3ydaercss oOpaTHBII BOIIPOC, a MMEHHO BOIPOC
BOCCTAHOBJIEHUSI HOPMbI IIPU U3BECTHOM JIOKAJIbHOM CTPOEHUU JIOKAJILHO MU-
HUMaJIBHBIX cereil. OkasbiBaeTcs, 4To npocrpancrso R", n > 3 ¢ EBkin-
JIOBOIT HOpMOit 00J1a/1a€T YHUKAJIBHBIM CEMENRCTBOM JIOKAJIHLHO MUHUMAJIHLHBIX
ceteil (TO eCTh HE CYIIECTBYeT Apyrux HOpM Ha R™ HCK/TI0OUast TOMOTETHIHbBIE
JNaHHoi EBKIINI0BOI, KOTOPBIE 00J1a/1a/a1 Obl TEM Ke CeMeiicTBOM JIOKAJIbHO
MUHUMAJIBHBIX CeTell, 9T0 U MpoCTpancTBo ¢ EBKinmoBoi HopMoit). B To xke
BpeMs, B mpocTpancTse R? ¢ EBK/mMI0BOI HOpMOIl 3TO He Tak. 3areM Oy-
JIeT IPHBEJIeHa cephsl IPUMEPOB HOPM B IIpocTpancTse R?, Takmx, 9To 3TH
HOPMUPOBaHHBIE TTPOCTPAHCTBA 00J1a1aI0T YHUKAIbHBIMI HADOpaMU JIOKATb-
HO MUHUMAJIbHBIX ceTell. Takxke B padbore Oyjyer mnokasano, uro R, n > 2
¢ ManxsTrenckoit HopMoil 0b6J1ajlaeT HEYHUKAJIbHBIM CEMEHCTBOM JIOKAJIBLHO
MUHIMAJIbHBIX ceTeil (3/1ech OyJieT MCIoIb30BaHo Gojiee y3Koe Olpe/ie/ieHne
JIOKAJTbHOM MUMMAJIbHOCTH CETH, a MMEHHO, Oy/IyT paccMaTpUBATHCA TOJIb-
KO Te ceTH, pebpa KOTOPBIX sIBJISIFOTCS OTpe3KaMmiu). Byjier npuBejieH mpumMep
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IIPOCTPAHCTBA, HE SBJISIONINiCS JIMHEHbIM IIpeoOpa3oBanueM MaHX3TTeH-
CKOro, 00J/1aJIaloIero TeM ke HaOOPOM JIOKAJIbHO MUHMMAJIBLHBIX CETell.

Parallehedrons, arising from convex hulls of orbits
Weyl group of irreducible root systems

M.B. Memiepsikon

MopnoBckuii HayaHO-nccieoBaTe/ibekuii rocyuusepceurer um. H.I1.Orapesa
Boubmesncrcekast 68, Capanck, 430000, Poccust

mesh@math.mrsu.ru

N-MEPHBII BBITYKJIbII MHOIOTPAHHUK B €BKJIMIOBOM IIPOCTpPaHCTBE F Ha-
3bIBAETCS TApaJIIeI0dIPOM, ecjin B [/ HaiijieTcs Takoe MoJIMHOKECTBO L, 9To

1) E= U (P+v) u2) mis sobbix v, vy € L nepecedenne (P+vp)N(P+1s)
vel
— obrrast rpaib MHOTOTPaHHUKOB (P + 1) 1 (P + ). P riybokux crpyk-

TYPHBIX CBOICTB mapaJiienodapos ycranosmt . Munkosekuii (cm. [1]):

Teopema 1. Eciu P — mapaJjuiesios[ip B MpocTpaHCTBe , TO: a) P 1eH-
TpasIbHO-CUMMeTpudeH, 0) runeprpai P IeHTpajbHO-CUMMeTPUIHbI, B) P
nmMeer He Oostee dem 2(2" — 1) rumeprpaseii, r) opToroHaibHast IpoeKinsa P,
napaJiieIbHo JTI000i ero rpan KopasMepHoCTH 2 Ha JIBYMEPHYIO TJI0CKOCTD,
sBJIsieTCs OO MapaJsIeIOrPAMMOM, JTHOO TEeHTPAJIHLHO-CUMMETPUIHBIM ITIe-
cruyroybaKoM. [Toznnee B. A. Benkos jiokazaJi, 9To yKa3aHHbIE BBIIIE YCJI0-
B ), 6) 1 T) XapakTepusyioT napaienodapsl (em. [1]). Becbma BazkubIe
pe3yIbTaThI 0 MapaJitensodapax noiydensl b. H. Jlesone u ero mkosoii. B [2]
OBLIIO JIOKA3aHO, YTO MHOTOTPAHHUK P, SBJISIONUIICA BBITYKJIONH 000109KOil
convQ, opbursl O, BekTOpa a = (ay, a9, ...,a,) € FE OTHOCUTE/ILHO CTAH-
JIAPTHOTO JIeficTBUST Ha F I'PYIIIBI OJICTAHOBOK Sy, SIBJISETCS TapPAJLIeIOd]I-
POM TOIJla U TOJIKO TOI'JIa, KOIJla KOODJIUHATDI @ BEKTOPa ¢ 00pa3yloT BO3-
pacTaiollyo apudMeTnIecKyio nporpeccuto. I'pyiiia S, siBjIsieTcs: IPyIIIoil
Beitist cucrembl Kopheit Tutia A,,_1. EcrecrBeHHO 00001IIUTH, pACCMOTPEHHYIO
B [2] 3aj1a1y, Ha JIpyrEe HENPUBOJANMBIE CHCTEMbI KOpHEil KpucTtaiiorpadu-
JecKoro tumna. TodHee, BepHa

Teopema 2. Brinykiibie 0607109k 0pOUT 00IIETo MoJIozKeHust rpyri Beii-
Jisl, HEIIPUBOJIMMbBIX KPHUCTAJLJIOrpadUIecKuX CUCTeM KOPHEeH, OTJUIHBIX OT
cuCcTeMbl KOpHeit Tutia, A, He sIBJIAI0TC HapaJsIeodpaMi.

Honoummu H. II. Teopembr MUHKOBCKOrO O IapaJsuiesiodpax 1 ux 00600-
menne YMH, 1. 62, o 4, ¢. 157158 (2008)
[Tosipkos A. II., T'apbep A. 1. O nepecraHoBOUHBIX MHOrOIpaHHIKaX. Bect-
auk MI'Y, cep.1 mar.-mex., Boi. 2, ¢. 3-8. (2006)
Moody R. V., Patera J. Voronoi domains and dual cells in the generalized
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kaleidoscope with applications to root and weight lattices Canad. J. Math.,
v. 47, Ne 3, p. 573-605, (1995)

MunumaJibHO-JIMHEITHbIe BJIOXKeHsT TpadoB
T. Ob6makoBa

MI'V nwm. JlomonocoBa, MexaHnko-mMaTeMaTudeckuii pakynbrer. Poccus, T.
Mockga, JlenuHnckme ropor, J. 1.

oblakova.t@yandex.ru

B noknaje pedb moiiger o TaKuX BJIOYKEHHAX IpadoB B €BKJINI0BO IIPO-
CTPaHCTBO, IIPU KOTOPBLIX HaMMEHbIIIee YHUCJIO TOYEK 00pas3a IPUHAIICIKUT
JIMHEITHOMY TIOJIIPOCTPAHCTBY, TO €CTh, B OOIEM Cjydae, 3ajiada COCTOUT B
IIONCKe TaKNX BJIOYKEHUIT Ipad 0B B N—MepPHOE €BKJIUI0BO IIPOCTPAHCTBO, IIPH
KOTOPBIX MaKCHMaJIbHOE UHCI0 TOYEK, MPUHAJIEKAIINX OXHON k—MepHOil
IIJIOCKOCTH, MIHIMAJIBHO.

B nepBoii gacTu jiokjaajia OyjgeT pacCMOTpEH Cydail repecedeHus odopa-
3a rpada npgMoit B TpexMepHOM IIpocTpaHcTBe. Byjer onucano cemeiicTBo
MUHHIMAJbHBIX TPadOB, IPU KayKIOM BJIOZKEHIN KOTOPBIX B TPEXMEPHOE IIPO-
CTPAHCTBO HEKOTOpas IMpsIMasi COAEP:KUT JeThIpe TOUKH o0pasa.

Bropas gactb JoK/aj1a OyIeT HOCBSIIEHa YUCTy TUIEePIIAHAPHOCTU I'Pa-
$oB — MHUHUMAJBHOMY YHC/Iy TOUYEK oOpaza, IMPUHAJIEKAIINX THIIEPILIOC-
KOCTHU, IIPU BJIOXKEHUU B €BKJIMOBO IIPOCTPAHCTBO 3aJIaHHON Pa3MEpPHOCTH.
Byzer onmcana BepxHsisi OLIEHKA TOr0 YUCJIa JIJIS JIePEBbEB, aCCUMTOTUYECKN
coBIaJalomasa ¢ HUzKHEN.

B Tperbeit wacTu Jl0K/Iajia 1OHET pedb O lepecedeHnn obpasa rpada
JIBYMEPHOil IJIOCKOCTBIO TP BJIOYKEHHUAX B UETHIPEXMEPHOE IIPOCTPAHCTBO.
Byzaer nokazaHo, 4To J11000ii IJIaHAPHBIH rpad MOXKHO BJIOXKUTH B YeThIPEX-
MEpHOE MPOCTPAHCTBO TaK, UTO JiloOasi JIByMepHasl IJIOCKOCTH COJEPKUT He
boJiee YeTbIpex Touek obpaza. Takzke OyaeT MpuBeIeH0 HECKOJIBKO TPUMEPOB
“SKOHOMUYHBIX  BJIOYKEHUI rpadoB.
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KpI/ITepI/Iﬁ AJJIUTUBHOCTU KOHEYHOI'O METPNYI€ECKOI'O
IIPOCTPAaHCTBa 1 MUHHMUMAJIbHbIE 3allOJTHECHUA

O. Pyb6aéna

Mockoscknit I'ocynapcrBennnblit yausepenteT nM. JIoMoHOCOBA,
MexaHuKo-MaTeMarudeckuii (-1, Bopobbesbl roper 1, MockBa, Poccust

rubleva-olga91@mail.ru

MunumasbHbIe 3a0IHEHNsT KOHEYHBIX METPUYECKUX IIPOCTPAHCTB ABJIfA-
I0TCsl YaCTHBIM CJIydaeM 0000IIeHnsd 1podJeMbl ['poMoBa 0 MUHUMAJIbHBIX
3aIl0JIHEHUAX Ha CTpaTugUIMPOBaHHBIE MHOroobOpasus. Paccmarpubaemast
pobjeMa UMeeT CaMOCTOATE/IbHBI MHTEPeC W MOYKET OBbITh IIPEJICTaBICHA
TaK:Ke Kak 0000IIeHne Jpyroil KJIacCuiecKoil 3aa4un, a IMEHHO, IIPO0JIeMbI
[ITeitHEpa 0 momcke KpaTdaiiieil ceTn, coeamHsoNIeil 3a aHHble TepMITHa~
JIBL.

B Teopunm MuHUMAJIBHBIX 3aII0JHEHUI IICEBIOMETPUYECKIX ITPOCTPAHCTB
BayKHYIO POJIb UI'PAIOT TaK Ha3blBaeMble aJJINTUBHBIE IIPOCTPAHCTBA. IJTH
IIPOCTPAHCTBA TaKyKe YacTO BCTPEUAIOTCS B NPUJIOKEHUSIX, TAKUX KaK O1o-
nH(OpMaTHKA, TEOPUs IBOJIOINNL.

B nokiaje Oyner jokKasaH CJenyOmnuii KpUuTepuil aJJiuTUBHOCTH KOHeY-
HOI'O METPUYECKOT'O [IPOCTPAHCTBA!

Bec MuHNMAa/ILHOTO 3aIIOHEHHUS TICEBIOMETPUIECKOrO MTPOCTPAHCTBA Pa-
BEH IOJIyIEepUMEeTPY 9TOr0 IPOCTPAHCTBA TOTJa U TOJIBLKO TOrJa, KOra IIpo-
CTPaAHCTBO &JIJIUTUBHO.

Ilepeuncaenne rpynn cumMerpuii Ondypkaiuii maJioii
CJIOXKHOCTHU B cJioeHusix JInmyBuiijis

JI. ®aneeBa
MI'y
lida.fadeeva@gmail.com

B Teopun raMUJIBTOHOBBIX CHCTEM BO3HUKAET 3ajlava N3YyJIeHUsd CHUMMET-
puit oudypraruit. B kavectBe dmdypkamnmit gagee paccMaTpUBAIOTCI OCO-
O6ennoctu ciaokHbIX GyHKIUi Mopca. g nx omucanust A.A. OnieMKoOBBIM
ObLIIO BBEJICHO MOHATHE f-Tpada U NpeJyIoKEeH U PeIM30BaH aJrOPpUTM KO-
IUpoBKH f-rpadoB, B pe3ysibTaTe pabOThbl KOTOPOro ObLI IOJyYeH CIHCOK
f-rpados masioit cioxknoctu. Mzydenune cumMmMeTpuit ocoOeHHOCTENH (DY HKITHT
Mopca sxBuBaJIeHTHO U3ydeHuo cuMmmMerpuit f-rpacdon. ABTopom ObLIT pas-
paboTaH aJrOpUTM, PACIIO3HAIONINN aITOPUTMIIECKT CUMMETPUN 33/ JaHHOTO
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f-rpada. s ciaydas rpados ciaokHocTu 1,2,3 TPYIIIBI CAMMETPUIT OIICa-
wbl B ([1]). Obosnauum a,, - aucio f-rpadoB GUKCHPOBAHHO CJIOKHOCTH,
Ipyliia CUMMETPUIT KOTOPBIX UMeeT MOPsJIOK 7.

B pesysibraTe paboThl ajropuTMma, Jjist aToMOB cJIozKHOCTH 4,5,6,7 10J1y-
qaeM:

Teopema 1 Cywecmseyem 62 HEIKBUBAAEHMHBLL AMOMA CAOHCHOCTIU 4, U3
Hux 20 uMenm HempusuUaNLHLE 2PYNNLL CUMMEMPUL U CACOYIOWULT TUN.:
8 amomos muna (0,Zs); & amomos muna (1,Zs); 1 amom muna (0,7Z4); 1
amom muna (0, Zy~Zz); 1 amom muna (1, Zy); 1 amom muna (1, Zs @ Zs);
1 amom muna (1,Z4 P Zs); 1 amom muna (1,Zg); 1 amom muna (2, Zs);
Cywecmeyem 870 neakxsusarenmuvix f-epaga croocrocmu 5, us wux 102
UMEIOM HEMPUBUANOHBIE 2PYNNDL CUMMEMPUL: as = 94,;a5 = 4 ; a9 =
4 Cyuecmeyem 9436 neaxeusarenmuvix f-epaga croorcrnocmu 6, usd nux 435
UMEIOM, HEMPUBUAALHBIE 2PYNNBL CUMMEMPUTL:as = 365; ag = 23; ay = 27;
as = 15; Cywecmeyem 122840 wnesxeusarenmunx f-epaga croscrocmu
7, us nux 1617 umerom wempusuasvbHovie 2pYynnsv. cummempui: as = 1697;
ar = 6; a1y = 4;
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[Iycts K — KOHEUHBIH CUMILIATUAIBLHBIN KoMILIeke. JIis cemelictBa @ =
{Fi,..., F,} 3aMKHYTBIX TOJMHOXKECTB HOPMAJIbHOTO IPOCTPAHCTBA X , JIJIsI
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kortoporo HepB N (®) C K, onpenensiercss K-meperopojika P cemeiictBa P
CJICJYIOITUM 00pa30M:

P=X\ViU---UV,,

e V; — okpecrnocru F; u N(Vi,...,V,,) C K.

mes K-11eperopoiku MOXKHO olpejesnTbh pasmepHoctn K — dim X u
K —IndX. Ecim K = {0,1}, To K — dim = dim, K — Ind = Ind. Pa3zmep-
Hoctu K — dim n K — Ind obJjiajiajor MHOrIMU CBOMCTBAMU KJIACCHYECKIX
pasmeprocreit dim u Imd, HO nMeeTcst u cBos crieruduUKa.
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