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Limitation: A given PDE system as it
stands does not have a useful local
symmetry or useful local conservation
law

Aim: To extend the existing methods to
systems that are nonlocally related bu
equivalent to a given system of PDEs

How to do this systematically?

A natural way to do this is through the use of
conservation laws (CLS)



CONSTRUCTION OF NONLOCALLY
RELATED SYSTEMS THROUGH CLs

Given any local CL
D, X(x,t,u,0u,...,0'u) + D T(xt,u,du,...,0'u) =0

of
Ru] = R(x,t,u,du,...,0"u) =0, (1)

one can form aequivalent augmentegbotential
system P

N X (xt,u,u,...,0'0)
ot

ov r
— =-T(xt,u,du,...,0"u)
0X



If (u,v) solves potential systemP then u solves

Ru] =0.

Conversely, ifu solves Ru] =0, then there exists a
solution(u,v) of the potential system due to
Integrability conditionss,, = v, being satisfied from
CL.

But the equivalence relationshipnenlocal and non-
Invertible since for anyu solving R[u] =0, if

(u,v) solves the potential systdmthen so does
(u,v+C) for any constant.

A symmetry (CL) of Rlu] = 0 yields a symmetry
(CL) of the potential systef®.

Conversely, a symmetry (CL) of the potential system
P yields a symmetry (CL) oR[u] = 0.



Suppose
0 0
X - ,t, W V) 1t1 V) o
E(x,t,u,v) aX+r(x u,v) p

+ a)(x,t,u,v)i + qa(x,t,u,v)2
ou ov

IS a point symmetry of the equivalent potential
systemP. Then X yields anonlocal symmetry of
the given PDE (1) iff

(&) +(1,)* +(@)? £0.

Hence through a CL of (1), a nonlocal symmetry of
(1) can be obtained through a point (local) symynetr
of the related potential systeén[Converse is also

true!]



Use ofn CLs to obtain up to 2" nonlocally
related systems

Now suppose, there an multipliers
{N\:(x,t,U,0U,...,0°U)} yielding n independent

CLs of Rlu] = 0.
Let V' be the potential variable multiplier A.[U]

Then we obtaim singlet potential systems
P, i=1...,n

Moreover, we can consider the potential systems

In couplets{Pi , Pj}: j= with two potential variables

in triplets {P', P’ Pk}in,j,k::L with three potential
variables



in ann-plet {Pl,..., P”} with N potential variables

Hence fromn CLs, we obtain 2" -1 distinct
potential system

Starting fromany potential system, we can continue
the process and if it h&$ “local” CLs, we can

obtain up to2" -1 further distinct potential systems.

One can tell in advance whether or not one obtains
further potential systems.

In particular, one can show that if the multipliers
depend only on the local variablegx, t, u) then no
new potential system is obtained.

Any one of these potential systems could yield new
nonlocal symmetries or new nonlocal CLs foany
one of the other potential systems or the “given”
PDE system.



Nonlocally related subsystems

Suppose we are given a system of PDEs
S{x,t,u*,...,u™} =0 with the indicatedM
dependent variables.

A subsystemexcluding one of the dependent
variables, say", S{xt,u',...,.u™ 7} =0 is
nonlocally relatedo the given system
S{x,t,u',...,u™} =0 if u" cannot be directly
expressed from the equations 8{x,t,u’,...,u™} =0
In terms of X,t, the remaining dependent variables
ut,...,uM™
and their derivatives.
Subsystems for consideration can arise following
an interchange of dependent and independent
variables of the given system

S{x,t,u',...,u™}=0



Tree of Nonlocally Related Systems

Consequently, for a given system one obtains a tree
of nonlocally related (but equivalent) systemsiags
from CLs and subsystems.

Each system in such an extended tree is equivalent
In the sense that the solution set fasiny system in

a tree can be found from the solution set for any
other system in the tree.



Due to the equivalence of the solution sets and the
nonlocal relationship, it follows that any
coordinate-independent method of analysis
(quantitative, analytical, numerical, perturbation,
etc.) when applied to any system in the tree may
yield simpler computations and/or results that
cannot be obtained when the method is directly
applied to the given system.

Note also that the “given” system could bany
system in a tree!!
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EXAMPLES

1. Nonlinear wave equation

Suppose the given PDE is the nonlinear wave
equation

U{xt,u} =0: u, =(c*(u)u,),

Directly, we obtain the singlet potential system
(multiplier is 1)

V

X

—u, =0,
UVv{xt,u,v} =0: )
vV, —c“(u)u, =0

By the invertible point transformation (hodograph)
X = Xx(u,v),t =t(u,v),
the UV potential system becomes

X =0,

XT{x,t,u,v} =0:
{ } {xu —c*(u)t, =0 11



One can show that there are only three more
multipliers of the formA\(x,t,u) = xt, x,t that yield
CLs for U for anarbitrary wave speed(u).

This yields three more singlet potential systememi
by
a, —Xtu, —u] =0,

UA{x,t,u,a} =0: {at ~t[xc*(u)u, = [ c*(u)du] =0

bX_XU[ :01

IR LR =0 {h ~[x¢ (), ~ [ (W)dd] =0

WX —[tUt _u] — 01

UW{x.t,u,w} =0: {\Nt ~t[c?(u)du=0

12



Nonlocally related subsystems arise fruVv
throughXT

T{u,v,t} =L{u,v,t} =0: t,-c*(u)t,, =0

X{u,v,x} =0: X, -(c*(u)x,), =0

One can show that the symmetry classifications of
these two PDEs are “equivalent”. Hence we
concentrate of.

One can show that there are only four multiplidrs o
the form

A(u,v,t) = c*(u), uc®(u), ve? (u), uvc (u)

that yield CLs forT for an arbitrary wave speed

c(u).

13



The resulting new singlet potential systems include

A p, —(ut, —t) =0,
TP{u,v,t, p} =0: {pu _uc(ult, =0

AL g, — Vi, =0,
TRtamha =5 {qu +c(U)(t-vt) =0
r, —v(ut, —t) =0,

TR{u,v.t,1} =0: {ru ~uc® (v, ~1] =0

Consequently, one obtains the followifigr from
exhaustive)tree of nonlocally related systems for the
nonlinear wave equatidd for anarbitrary wave
speedc(u).

14
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Point symmetry classification of the nonlinear waggiationJ was
given in Ames, Lohner & Adams (1981)

Point symmetry classifications of potential syst€mand subsystem
T were given in B & Kumei (1987)

Partial point symmetry classifications of the patasystems'P and
TQ can be adapted from results presented in Ma (1990)

Complete point symmetry classifications of potdrgystemdJA, UB,
UW, TP, TQ are given in B & Cheviakov (2007). Many nonlocal
symmetries for the nonlinear wave equation aredduom each of
these nonlocally related systems in terms of spdafms of the
nonlinear wave speetfu). In particular, the following new nonlocal
symmetries for the nonlinear wave equatibwere found:

16



For potential systerdB, settingF (u) = jcz(u)du, one finds that if
F(u) satisfies the ODE

F'(u) _ 4F(u)+2C,
F'(u)? (Fu)+C,)?+C,’

with arbitrary constant€,,C,,C;,then the potential systethB has

the point symmetry
2
X =(F(u) +C1)xi +bﬂ+ (F(u) ""Cz) +C, 0
ox ot F'w) o

0
+(2C.b—(C.2 +C)t) —
(2C,b - (C, 3))ab

that is a nonlocal symmetry of the nonlinear wageationU.
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For potential systerdW if c(u) satisfies the ODE

with arbitrary constant€,,C,, then it has the point symmetry

0 0 0 0
X=W—+U+C)t—+(Uu*+C,)— -C,x—,
OX ( 1) ot ( 2)6u = ow

that is a nonlocal symmetry of the nonlinear wagpeationU.

18



For potential systeniP, if
c(u) =u~%e"",

It has the point symmetries

a 2 a 2 2/u a -1 2/ua
X, =(pu—-2tv(u+1)—-2u'v—+ (U -+e”’")—+tu e’ —,
=(p ( ))at 0 ( )av 3
0 , 0 0
X,=t(u+l)) - +u"—-v_—,
2 = ))at ou oV

that are both nonlocal symmetries of the nonlineare equatiot

19



For potential systemR, new nonlocal symmetries
are found folU from its point symmetries when

c(u) =u™".

20



Table 2

Cases in which nonlocal symmetries of the nonlinear wave equation U (1.1) arise

System

Nonlocal
variable(s)

Condition on cii)

Symmetries: remarks

or UV (2.3)

T
Suy )

UA (2.12) |a No special cases Nonlocal symmetries do not arise.
UB(2.13) |b oy =23 Linearizable by a point transformation.
i (O -
Flan _ __4F+C) One nonlocal symmetry.
(F'u= (Filu)+Ca =40y
. D — - \
(F(u)= | c=(uydu, Cy,Cy, C3 = const)
UW 2.14) |w ey =u—2 Linearizable by a point transformation.
One nonlocal symmetry.
I L) L elu) One or two nonlocal symmetries; adapted
XT (25 |v [S2 (S =0 ’ F

from [4].

)

3 3 TN 2 "
—i2ue=Fu=ce e 2u=eie™y

One or two nonlocal symmetries;

= 5
A (2ee!=5(c")2)2

o = const

TP(2.22) |v.p ———5 . )
¢ uc+2c)” R partially adapted from [6].
+ —ide=tu= (0= —8Succ i F6ic—uc i 52
c,'3€!lc"+il‘]: o
A = const
2 ] ~ .
cluy=u"= e 1 of nonlocal sy tries:
(u)y=u Infinite number of nonlocal symmetrie
there exists a point mapping into a
system with constant coefficients.
1. e ’ \ ¢ -2 / 3 P, =2 . -
IQ2.23) |v.g cy=u""""ictuy=u"" Two nonlocal symmetries: partially
adapted from [6].
i (e A .
TR (2.24) |v.s '“‘"‘,"—1”',‘“ =12 = const Two nonlocal symmetries.
lue!+2e)=
= o ' 23 One or two nonlocal symmetries:
Li2.15) v o' + Ha)Y =o~oe~ (1), o = const X e
adapted from [4].
Fooos g \ 2 crrd -
(H=cw /ey, o”=(H"—2H" 1
-2 ~ - -
clu)y=u"- Infinite number of nonlocal symmetries:
there exists an invertible mapping into a
system with constant coefficients [9].
X (2.16) v (—2ec’ +50e 2™ 433 (T p1eet )P One or two nonlocal symmetries;
X (2.16 PSRRI T i .
2 (2ee =5(c" ") partially adapted from [6].
I p oo . a2 v A -
+ —Me=c e 120 e =100 )T e — 03‘
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2. Nonlinear Telegraph Equation

Suppose the given PDE is the nonlinear telegraph
(NLT) equation

UEXEUE =01 Uy — (FU)Uy)y — (G(U)), =0

Case (a)Forarbitrary F(u),G(u), one obtains two
singlet potential systems

Vi, — U =0,
vy, = (F(u)u, +G(u)) =0
Vo, — (tu, —u) =0,
Vo ~t(F(U)u, +G(u)) =0
Case (b)Forarbitrary G(u), F(u) =G'(u), one obtain
two more singlet potential systems

{b3x —-e’u, =0,

UB4{x,t,u,b;} =0:
by —€"F(u)u, =0

b,, —€"(tu, —u) =0,

b, —te*F(u)u, =0

UV, {x,t,u,v} =0: {

UV {xt,u,v,} =0: {

UB {x,t,u,b,} =0: {
22



Case (c) F(u) arbitrary,G(u) =u: In addition to the
first two singlet potential systems, there are two
more:

Cay ~ (X=3t%)u, +1u) =0,

C.{xt,ucy=0:
U 3{XtUC3} {Cst—(X_%tz)(F(u)uX+u)+J.F(u)dl

Cay + (%tB —tX)ut + (X—%tz)u =0,

UC4 ARt R} =0:
{X,6,U,Cy} {C« + (2~ DO (F (U)uy +u) +t [ F(u)

23



UV, V,{x t u,\, v}=0

UV, {x t u, }=0

UV,{x, t, u, y}=0

U{x, t, 4=0

Tree of nonlocally related systems for NLT egnddritraryF(u), G(u)

24



uv,Vv.B;B,{x t, u,\, v, b, b}=0

UV,V,B.{..}=0

UV,V,B.{..}=0

UV,B,B,{..}=0

UV,B.,B,{..} =0

UV, V,{..}=0

UV,B.{..}=0

UV,B,{..}=0

UV,B.{..}=0

UVBL..}=0 UBB,{..}=

UV, {x, t, u, }=0

UV, {x, t, u, v}=0

UB,{x, t, u, B}=0

UB,{x, t, u, h}=0

U{x, t, 4=0

25
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TABLE 1V. Symmetries of the potential NLT systems for

case for case (b): F(u)=(a+ Du®, Glu)=u*{a#0,-1).

System Fu) Glu) Symmetries

UV, V,B;B,. (a+1)u” uet! Y,:-ﬁ;*-*w—% i+ by + by

UV V,Bs, Ya=5 ‘”?"uga "“3’4&» } *3}‘ +Fi:: ;4:35].’
9 ! > a & Fa ;;

UV VB, Ys=:0 Ye=5 Y=,

UV, B:B,.

UV,BB,. 3y = Ys=t25+tuz—Urz—byz

UV VL, UV B,

UV B, . UV,B,,

UV,B, UB3By.

UV UV,

UB; . UBy.

U

UV, v, 3u? w }"Qzﬁviﬁ%»r{w g’»+2;;}~—xw-*—L‘,m—z.‘.v_w
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TABLE VL

Nonlocal conservation laws of (4.1).

Case System Subcase Multipliers Fluxes
™ —_— wd ar+2 aorte v
(a) UVi B=-1 A =t T4 Ay=ur X:—{;+E+f+x}uj,
(s +5+1)
T=\ w2 tx/u.
3
Flu)=u~ A=v A= w2 vl
( } 1 Ul’ 2 Xz_n‘+2 ?,
T=uv |-t
= —_ L'J' L"" ] Z
Glu)=u? a=—1 A =T o(xru)u, +1, X=—g—(x+u)vi—1v,—5—2xu,
el b
—— [ —_ .‘- ’) L"[
B=—1 A;=(vi+u+2xu. T:{rc+?}uul+2xrmj+a‘{r:—2x}.
A o4 2 2, W o leradel (o
A =et/ 2+ (utx)oi+io o+ + 7, X=—o T (Qux)xe —tu,
o 2 5 2 2 avt
4-13:{?’+r+uvl+1rvl}u. T=—5+{§+0]+ 205 +53 + (xv  +)uv |+,
1 2
uv =—1 L __ v wm g wept?
2 B *11 ,2*""2 i X__‘?l;?_n'+2’T_ t
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(D) Uy, aF-1 A=cu*' A=, X=—e'u*"'p,,
Flu)=(a+1)u* aF -2 fw? v
()=(a+1) * r=e{£244)
. i s e
Glu)=u*! v, a=—4 f‘s.l——r*T,; =€, X=¢ ;,T:g‘{'—z—y;}
i u
UB;  a#-1 Aj=—u" . Ay=e"b; X=—u**lp, T=e*" ;+€“T3
—_— . nrJ_1_ 1 _ . .'2
UB, a=—-4 A= 3,_*'..3—t b X=—-o-=, =€ "f)‘_i—é"‘ﬁ
- T — |.‘4 |2 -
(c) v, a=1 1-11:[—,_|—_;-F+ml—'7+_r2, X:'[Tj—rr+ 6”}”3
ol
i J
Flu)=u —{ru +ﬁ—_rr-+.r]'ul,
— £ 3 ] 3 7
Glu)=u Ag=—F+tu+2x)-v,. T=—"%¢+ 113 +.:."—.rr‘+mj}u
o3
+{?rr—‘3—'7}ul.
e 2 3 p
Aj=%—xt+v, X:{?—%—x}u +(2 rr———TL}UJ,
2 2
Ay=—F+u+x T='[_T 2x }rt+[u+2r—r-}vl.
v, a=1 A - wa—x° ut 2 y% (=4 4o g
2 A=7-x+—= _w  der 2
1 e X_1+_u+2# 7 .
Ay=r— 2 ot _|;i’"*'—'1-.r|;i'2+.'l.':l:l.'|'_(3.‘-.‘—?2][l:
R 4r i .
UuC, a=1 A — .':—E.r_'_ MaSu? A+ Sicy I:?:—E.r][m:+3¢'3:l+.'1:.'.':"+3ﬁ:_-.,]+.'i[r.az—lll'3:l+3|:|u2|:_-,+.'1:i'5+5|:_-,]¢'3
- =" 400222 IR =— ; PR o s
(P-2x)  10(A-2x) 64 43 160022 400 -2x)*
A 2oy H{2xa) R LI T A T (s [y (P43 c3)es ' -
I 0o AP R 80(A—20) | 402




Consider now a classification problem for the nosdir telegraph

(NLT) equation
Uy —(F(uu,), —(G(u),=0. (1)

Forany (F(u),G(u)) pair, we naturally obtain potential systems

RIuN =V, - F (u)u, ~G(W) =0,

R[u,v] =v, —u, =0 )

Hl[U,V,W] = Rl[U,V] - 01
H,[u,v,w]=w, -v=0, (3)
H,[u,v,w]=w, —-u=0.

For specific (F(u), G(u)) pairs, the CL classification problem for
(2), etc. can yield additional CLs and hence furtiaential
systems for consideration [B & Temuerchaolu, J.iMainal.

Appl. 310, 459 (2005)]



NONLOCAL SYMMETRIES

0 0 0 0
X=XxL,UV)—+r(x,t,UV)—+np(x,tuUVv)—+a@gxtuUVv)—
é( )ax ( )at ( )aU A )av

IS a point symmetry of the potential system (2ndl
only if

$v Ty =0,

M —® +¢x—1; =0,

G(U)[’7V +Tx] +1, —@ =0,

$u —FWU)r, =0,

@ —GU)r, —FU)p, =0,

GU)s¢y +¢ —FU)r, =0,

FU)® -1 +<$—my —26U)r, [ -F'U)r =0,
GU)[g -1, -GU)r,]-FU), -GU)7+¢ =0,

holds forarbitrary values ofxt,U,V
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Theorem 1[B, Temuerchaolu & Sahadevan, JME, 023505
(2005)] The potential system (2) yields a nonlocal symmetfrihe
NLT egn (1) if and only if

(Cu+¢,)F'(U) —2(c, — ¢, ~ G(U))F (u) =0,
(cu+¢,)G (1) + G2(U) - (¢, — 2¢, +¢,)G(U) — ¢, =0

In the linearizable case; =0, ¢, =c,(c;—C,).

For any such paiH(u), G(u)), the (1,v) potential system has the
point symmetry

0 0 0
X = —+r—+ o+
5 ox ot Oau ¢aT/

31



with

£=clx+jF(u)du,

T =Ct+v,
N=Gu+c,
p=cit+(c —C, +C)Vv

Modulo translations and scalingsurandG and scalings it
(involving 5/7 parameters), one obtains six digtelasses of ODEs

for (F(u), G(u)) where the scalau) eqn (1) has a potential
symmetry.

32



Classification Table for Potential Symmetries

relationsiip G(u)
B 2a

u u -1

F(uy=—G'(u —

W="_GW 7

u2a +1

u* -1

B

F(u)

Ay2ept

(u20 + 1) 2
4u2a+,8—1

F(u) :%G'(u) tan@Inu) u’tsed(alnu)

F(u)=u’G'(u)  (Inu)™

F(u) =e’?G'(u) tanu

tanhu

F=eew) cothu

F(u) =e’?G'(u) u™

-u"*(Inu)™?

e?sedu

e*® sech?u
-e®™ csch?u

—_ u—ZeZ,ﬂJ
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Modulo scalings and translations, two distinct
linearization cases occur:

34



Case 1.

admits

with

v, —F(u)u, =0,
v, —u, =0

0 0
X = A(u,v)— + B(u,v) —
( )ax ( )at

A —-F(u)B, =0,
A -B =0 (hodograph transf)

35



Case 2.
V,—uu, -ut=0v, —-u =0
admits

_ 0 0 0
X =-uA(l,v)— + B(G,V)— + A(G,v)—,
( )ax ( )at ( )au

u=x+logu,
with
A +B, =0,
A, +B,—A=0.

36



Point Symmetry Classification of () Scalar NLT

Consider () scalar NLT egn

u; =[F(uu,], +[G(u)],
Then

X* = X+ &£ (X,t,u) +O(£?),

* =t+er(x,t,u)+0(e?),

u* = u+é&n(x,t,u) +0(e?),
IS a point symmetry of thai scalar eqgn iff

X @ (utt - (F(u)ux)x _G(u)x) = O

for any soln of the () scalar eqn wher& ©® i
second extension of

S

9 9 0
X=¢f—+7—+n0—
Sox Tat o

37



This leads taletermining equations

(=1, =1,=n,=¢ =0

2F (U)[-7, +&,]-F'(u7 =0,

My = F(U)7,, ~G'(u), =0,

217y, — Ty =0,

F(U)[27,, = &ol +& +2F (U7, -G'(W)[&, — 27,1+ G"(u)7 = O

which must hold foarbitrary values ofx, t, andu.

For arbitrary E(u), G(u)), translations irx andt are symmetries.

38



Classes of(F (u),G(u)) yielding point symmetries of scalar ) NLT eqn

G(u) F(u) Infinitesimals
et eV (&,1.n) = Qax[a-1}t,2)
u  (&,7.n) = 2B [a +2B]t,-2u)
ut u® abover(&,r,n)=(e"0-ue)
u®  (&,r.n) = (2a +1x[a+2}t,2u)
u e™ (&,1,n) = (ax,at ,2)
u™ abovet (&,7,7) = (0,t°,tu)

39



Theorem 2 Each point symmetry of théu,v) NLT potential system
that is a nonlocal symmetry of the NLT scalap €gn yields a
contact symmetry of the NL' W) potential eqgn given by

Vvtt = F(Wx)wxx + G(Wx)
Theorem 3 A point symmetry of the NLT scal&u) egn yields a

point symmetry of th¢u,v) NLT potential system for all cases except
when (F (u),G(u)) = (u™,u™).

40



CONSERVATION LAWS

(é(x,t,U,V),a(x,t,U,V)) are multiplierdor a CL of
NLT potential systeniff

E, (§R[U,V]+@R[U,V])
E, (6R[U,V]+@R,[UV])

0,
0,

for arbitrary diff. functions (U (x,t),(V(x,t)). This
yields determininegns:

@ —¢y =0,

@ —FU)s, =0,

@ —¢—GU)sy =0,
FU)E, -@-[GU)&], =0.

(4)

41



Then for any solution of (4), the conserved deesiéire

X = —L_J[f(x,t,s, b)ds—\jqp(x,t,u ,s)ds—G(a)_Tf(s,t, a,b)ds,

b

T= jqp(x,t,s, b)ds+jf(X,t,U ,s)ds
" b

Classification results for CLs

Solution of determining system reduces to studgystem of two
functions

d (U ) — GIZFm _ 3GIG"FM + [36"2 _ Ger] FI’
h(U) =G*G" -4G'G'G" +3G"
Three cases arise:

dU)=hU)=0,
d(U) £0,h(U) =0,

dU)£0,h(U) 0.
42



Case I')F(u) is arbitrary

F(u) | G(u) Multipliers
arb | u (&, 9) = [t,x-1t?)

(&9 =(1-1)
arb | 1l &,9=(U,V)

(&9 =(UV,iV*+ x+LjsF(s)ds

43



Case ll:h(u) #0,d(u) #0

JF -G (&.9) = Ae“PV) (142 (G + p))
=5G+A)” (&)= (L) (xtU,Y)

[A=expix+4 [(G(s) + B)ds]

-G = (6.@) =" (L2)

(52 , (02) = (51(X,—t),—§01(x,—t))

< I

=G ¢.9=€e"(t7)
(¢, =€"(V,.GU))
($.9 =¢" (10)




Case lll:d(u) =0,h(u) =0

Using symmetry analysis (substitution + invariance uisd@rable three
parameter group), ODBE(u) =0

can be solved in terms of elementary functions @G)).

Then note thaF(u) = G(u) + const is a particulagoln of resulting line:
ODE d(u) = 0= general soln.

Consequently, forF (u) = 5,G*(u) + 5,G(u) + B,, B,° 2 AB.5;
there are four highly nontrivial conservation lawisen

Gu)=u, 1/u, €', tanhu, tanu.

[In the case of a "perfect squad*® = 48,53,, there are two conservation
laws.]
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3. Planar Gas Dynamics (PGD) Equations

Suppose the given system of PDEs is the planar gas
dynamics (PGD) equations. In tGBelerian
description,one has th&uler system

p,+ (), =0,
PV, +vv )+ p, =0,

Lo(p +vp) +B(p, p )V, =0

N

E{xt,v,p, 0} =0:

In terms of entropy densit§(p, p), constitutive
function B(p, o) is given by

B(p,p ™) =-p"S,IS,
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In theLagrangian descriptionin terms of the
Lagrange mass coordinatest, y = on o(&)dé, one

has thd_agrange system

L{y,sv, p,q} =0:

<

-

s —Vy =0,
Vet py, =0,

| Ps +B(p,q)v, =0

We now show that the potential system
framework yields a direct connection between the
Euler and Lagrange systems. As well, we derive
other equivalent descriptions!

We use the Euler system as the given system. The
first equation is a CL and through it, we introdace

potential variabl¢ and obtain the potential system
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G{x,t,v,p,0,r} =0: S

In order to obtain a nonlocally related subsystinst, consider an

1, —p=0,

+ov=0,

PV, V) + P, =0,

Lo(p, +Vp,) +B(p,p ™)V, =0

Interchange of dependent and independent variabl€&with r =
y andt = s as independent variablesy, p, p as dependent

variables and lef] = 1/p to obtain the 1:1 equivalent system

G lvy.sxVv,p,p=0:

3

-

X, —q=0,
X, —VvV=0,
v+ p, =0,

| ps +B(p.g)v, =0

A nonlocally related subsystem @, is obtained by excluding

through

Xys = Xsy 10 Obtain thebagrange system Ky, s v,p,q} =0
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A second conservation law of the Euler system
obtained with the multipliers

(AN A3) = (v 10)

yields a second potential varialw. The couplet
potential system containing both of the obtained
variables andw is given by

r.—p=0
. +ov=0,
W{x,t,v,p,0,r,w} =0: w, +r, =0,
W+ p+vw, =0,

Lo(p +vp) +B(p, o)V, =0
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From the third equation &, one can introduce a
third potential variabl&

and obtain potential system

(rx -p=0,

r,+ov=0,

z —wW=0,

z, +r =0,

W + p+vw, =0,

Lo(p +vp) +B(p, o)V, =0

Z{x,t,v,p,p,r,w,zt =0: -

The Lagrangian systeim has a nonlocally related
subsystem

Osst Py =0,

L{y.s p,gt=0:
LS P {m+an%=0
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Z{ x, t,v, p,o 1, w, 2=0

W{ x, t,v, po r, w=0

Z{ x, t,v, p,p, w,z=0

G{x,t,v,pp r}=0 = Gy,{vy,s, X V,p, KO0

W{x 1, v, po,W=0

E{x t,v, p,ot=0

L{y,s,Vv,p, O

L{y,s, p, 40

Tree of nonlocally related systems for PGD equation
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Starting from the Lagrange systém one can obtain
three singlet potential systems from three sets of

multipliers
(£4(y.9), 1 (Y, 9), 5y, 5)) = (100), (01,0),(y,s0)
(W, —q=0,
W —Vv=0,
G=0« Gy,=LW{{y,s,Vv, p,q, W} :O:<VS+ b, =0,
| ps +B(p,a)v, =C

rqs _Vy = O,
W,, =V =0,
LW {V,S,V, p,d,W,} =0:+
W, + p=0,

s +B(p,g)v, =0
(W, —sv-yq=0,

LW o{ }=0 W +sp—yv=0,
151V1 ’ 1W = U4
Ny P, 4, Wy V. +p, -0,

| Ps+B(p.q)v, =0
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LW WW. Yy, s, vV, p, q, ywv,,Ww}=0

LW W,{Yy,s, vV, p, qw,}=0 LW Wy, s, vV, p,q, yw}=0 LW WAy, s, vV, p, q, yw}=0

\ o =/

LW {y,s, Vv, p, q,W=0 LW Ay, s, v, p, qwW=0 LWL y,s, v, p, qyW=0

L{y,s,Vv,p, O

L{y.s,p, &0

Extension of tree of nonlocally related systemdfagrange system for PGD egns
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Two more CLs arise for the Lagrange system
when one considers multipliers of the form

L(y,sV,P,Q), 1 =123
In general, one can show that

th=ay—[pP+B(P,Q);+9,
Hy, =as+ [V +v,
Hs = 15y, P,Q),

where a, p,v,0 are abitrary constants ang(y,P,Q
IS any solution of PDE

OHs _ 9. -
30 op (B(P-Q)Ks) +5=0

The two extra CLs arise (farbitrary constitutive

function B(p,0))
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(1) from conservation of energy
— @AV +K(p,q))+—(pv) =0
as(zv (p.q)) ay(pV)

whereK(p,0) is a solution of egn

Kq - B(p’q)Kp +p=0
(2) from conservation of entropy
0
a—S(p,q) =0
S

where§p,q) is a solution of egn

S, ~B(p.a)S, =0
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For multipliers restricted to dependence on the
Independent variableg,§), no further potential
systems (just the first three) arise in the case of
Lagrange PGD systein with a generalized
polytropic equation of state

B(p.a)="" P, M(p) 20
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TABLE VIL Symmetries of the generalized polytropic PGD system (2.10), (5.1).

System Mip) Symmetries
L., (i) Arbitrary Li=g+wpns. =5+ e
.. w & E 2 2
LW, LWL LW, L= +53 ﬁxm«u‘ym‘
. » y ’ 5
‘ 2. LW W ==y 2= +V—+Ww
LW, W LW, w Zy + ;,,“w + w
. 2
MW _s— 1.— Wi s 2wy,
LW ‘\\ Z}S + e + la + aw, + L N
e v a "
'.\‘]Vﬁ 2“3 {u-‘« » 1{‘1—- ef;gmm;‘
. For S
L.LW, (it) =plnp Zy '\;;—h.j ;;-t-lw,q +i""'+‘..nmﬁ
P (veliy (y=lw 5
iii) yp +ap' Y W 2 _ 4 2 2
{ ')ijp é” /ig— +}' '.", me’*?@\? v &* — ) ’3"“&‘
y#0,-1
(iv) | + ae?. “_ we? 2
=41 Zu Imn*‘i*s Sawy
43 2
Zia=y ?4- aqw et et
’ P 2 a / N a3 " \ a
LW 2 lll} -p In P Zg..a '_;';;4' ¥P o a "3“'15}15."’4;;:«(}%’ -, i; +'x~v«‘3m,
..... !; 3 ¥ s W
(iii) yp+8p'ri¥y Zyy=y% »t *P""—l L oA e T e T

y#0,-1

Wy
¥ 5; -y

o e Ty




TABLE VIII. Point symmetries of the subsystem L (2.19) of the generalized polytropic PGD system (2.

M(p) Symmetries
(1) Arbitrary leé Zi=
o 1 s = o’
——y itV Te=gd iy
é— Vi t2a55 . Ls=s 5ty
. ey danp i 240
(i) =plnp Zy=y PR s e
) a
Zn— »“—+\p-—(3—,n—,,)\qg.

(1i1) yp+ 5;)”*”’”

y=3

fy+I1\ s
—_— 9 2
£10= +1 ap 8;"'74»&"‘7

@z) +\p—-(3-——‘g—) VG

Yoplirey’ AT

(1v) 1 +ae?
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Remarks
Extended trees hold for ambitrary constitutive function

Either Euler system or Lagrange system can be gystem—
tree will not change

In Akhatov, Gazizov & Ibragimov (1991) a completegp
classification with respect to constitutive functias given
separately for Euler and Lagrange systems but cbions
between systems were heuristic

To systematicallyconstruct nonlocal symmetries of the Euler and
Lagrange systems one needs to do the group ctadsin

problem forall systems in an extended tree with respect to the
constitutive function (as well as consider othessible extended
trees for specific constitutive functiofalowed by point

symmetry analysis)
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e E.g., for Chaplygin gaB(p,q] = —p/q], subsystem
L{y,s p,q} =0

has the point symmetry (not in AGI) given by

0 0 0
X =-y>—-py—+3yq—,
y oy pyap yqaq

which yields a nonlocal symmetry f&randL.
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Further extended trees for PGD eqns for specific constituter functions

Example A: For B(pl/ p) = p@+eP), systemG{x,t,v, p,o,r} =0 has
family of CLs:

1+eP 1+eP

Dt( f (r)e"j+ Dx( f (r)vepj “o

for arbitraryf(r). This CL can be used to replace tHeegn of
G{x,t,v, p,0,r} =0 to introduce potential variable and potential

system

r,-0=0

r,+ov=0,
C.{xtv,p,or,c=0:r(v,+w,)+p, =0,
c,+ePf(r)/(1+ef) =0,
¢, —ve’f(r)/(1+e”) =0.
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Example B. For Chaplygin gaB3(pl/ p) = —pp, system
G{x,t,v, p, o,r} =0 has a family of CLs

Dt(mj + DX( f (r)v) =0
P P

for arbitraryf(r) to yield a family of potential systems

r.—p=0
r+ov=0,

D . {xt,v,p,por,d}=0:4r (v, +wW, )+ p, =0,
d +f(r)/p=0,

d, —vi(r)/ p=0.
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Ceix, tv,p prc;=0

AN

(a) Gix, t v, p p r}=0

De{x, t,v,p pr di=0

/

Gi{x, v, p, pr}=0 (b)

Level 5

Level 4
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One can show that new nonlocal symmetries aristneoChaplygin
gas Euler system only whein(r) =r, f (r) = const.

For f(r) =r, this Chaplygin gas system has symmetries

3 2
Xy = -Cadt|9+[d-L |0+ 0 PO
' 6 0X 2)ov  0Op pop

2
Xy = —t—+d 2+—t£+r 9 _r,oa_
? 2 0X ov Jdp pop

« SymmetryX,_ is nonlocal for both the Euler and Lagrange
systems

« SymmetryX,_is nonlocal for the Euler system but local for the
Lagrange system

» Hence in AGI, symmetry, was not obtained
64



REFERENCES

Conservation Laws

* Anco & Bluman (1997) Direct construction of
conservation laws from field equatioRRys.
Rev. Lett78 2869-2873

* Anco & Bluman (2002) Direct construction
method for conservation laws of partial
differential equations Part I: Examples of
conservation law classifications; Part Il: General
treatmenEJAM 13 545-566; 567-585

« Wolf (2002) A comparison of four approaches to
the calculation of conservation lalAM13
129-152

65



Construction of Potential Systems

* Bluman & Cheviakov (2005) Framework for
potential systems and nonlocal symmetries:
Algorithmic approachl. Math. Phys46 123506

* Bluman, Cheviakov & Ivanova (2006)
Framework for nonlocally related partial
differential equations systems and nonlocal
symmetries: Extension, simplification, and
examples,]). Math. Phys47 113505

Example of Nonlinear Wave Equation
* Bluman & Cheviakov (2007) Nonlocally related
systems, linearization and nonlocal symmetries
for the nonlinear wave equatiah,Math. Anal.
Appl. 333 93-111

66



Example of Nonlinear Telegraph Equation

Bluman, Temuerchaolu & Sahadevan (2005)
Local and nonlocal symmetries for nonlinear
telegraph equations Math. Phygl6 023505

Bluman & Temuerchaolu (2005) Conservation
laws for nonlinear telegraph equatiods|AA
310459-476

Bluman & Temuerchaolu (2005) Comparing
symmetries and conservation laws of nonlinear
telegraph equations Math. Phy<l6 073513

Bluman & Cheviakov (2005) Framework for
potential systems and nonlocal symmetries:
Algorithmic approachl. Math. Phys46 123506

Bluman, Cheviakov & lvanova (2006)
Framework for nonlocally related partial
differential equations systems and nonlocal
symmetries: Extension, simplification, and
examples,J. Math. Phys47 113505

67



Example of Planar Gas Dynamics Equations

 Bluman & Cheviakov (2005) Framework for potential
systems and nonlocal symmetries: Algorithmic
approachl. Math. Phys46 123506

* Bluman, Cheviakov & Ilvanova (2006) Framework for
nonlocally related partial differential equations
systems and nonlocal symmetries: Extension,
simplification, and exampled, Math. Phys47
113505

» Akhatov, Gazizov & Ibragimov (1991) Nonlocal
symmetries. Heuristic approach.Sov. Math55
1401-1450

68



Example of Nonlinear Elasticity Equations

« Bluman, Cheviakov & Ganghoffer (2008) Nonlocally
related PDE systems for one-dimensional nonlinear
elastodynamicsl. Eng. Math62 203-221

* Bluman, Cheviakov & Ganghoffer (2009) On the noaloc
symmetries, group invariant solutions and consemmat
laws of the equations of nonlinear dynamical corsgitde
elasticity. Proceedings tf TAM Symposium on Progress
in the Theory and Numerics of Configurational Mauhsa,
Springer, 107-120.

69



Example of Schroedinger’'s Equation; Kolmogorov Eqns

* Bluman & Shtelen (1996) New classes of Schroedinger
equations equivalent to the free particle equatoough
non-local transformationg. PhysA 29 4473-4480

e Bluman & Shtelen (2004) Nonlocal transformations of
Kolmogorov equations into the backward heat eqnafio
Math. Anal. Appl291419-437.

70



Book

* Bluman, Cheviakov & Anco (201@pplications of
Symmetry Methods to Partial Differential Equationsl.
168, Springer Applied Mathematical Sciences series.

71



