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A SYSTEMATIC CONSTRUCTION 
OF NONLOCALLY RELATED 

SYSTEMS OF PDEs 
 

 
1. Construction of nonlocally related PDE 

systems  
--Use of CL to obtain nonlocally related system 
(potential system) 
--Use of n CLs to obtain up to 2n nonlocally 
related systems 
--How to find nonlocally related subsystems 
--Tree of nonlocally related systems 

 
2. Examples 

--Nonlinear wave equations 
--Nonlinear telegraph equations 
--Planar gas dynamics equations 
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Limitation:  A given PDE system as it 
stands does not have a useful local 
symmetry or useful local conservation 
law 
 
 

Aim:   To extend the existing methods to 
systems that are nonlocally related but 
equivalent to a given system of PDEs  
 
 
How to do this systematically?   
 

A natural way to do this is through the use of 
conservation laws (CLs) 
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CONSTRUCTION OF NONLOCALLY 
RELATED SYSTEMS THROUGH CLs  

 
Given any local CL  
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If ),( vu  solves potential system    P   then  u  solves
0][ =uR .

Conversely, if  u  solves  0][ =uR , then there exists a
solution ),( vu  of the potential system P due to
integrability conditions txxt vv =  being satisfied from
CL.

But the equivalence relationship is nonlocal and non-
invertible since for any  u  solving  R[u] = 0,   if

),( vu  solves the potential system P, then so does
),( Cvu +   for any constant C.

A symmetry (CL) of  R[u] = 0  yields a symmetry
(CL) of the potential system P.

Conversely, a symmetry (CL) of the potential system
P  yields a symmetry (CL) of  R[u] = 0.
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Suppose
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is a point symmetry of the equivalent potential
system P. Then  X  yields a nonlocal symmetry of
the given PDE (1) iff

.0)()()( 222 ≡/++ vvv ωτξ

Hence through a CL of (1), a nonlocal symmetry of
(1) can be obtained through a point (local) symmetry
of the related potential system P. [Converse is also
true!]
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Use of n CLs to obtain up to n2  nonlocally 
related systems 

 
Now suppose, there are n multipliers 

)},,,,,({ UUUtx q
i ∂∂Λ K  yielding  n independent 

CLs of R[u] = 0.   
 
Let  iv  be the potential variable ][  multiplier  UiΛ↔  
 
Then we obtain n  singlet potential systems  

niPi ,,1, K=  
 
Moreover, we can consider the potential systems  
 

in couplets { }n

ji
ji PP 1,, =  with two potential variables  

 

in triplets { }n

kji
kji PPP 1,,,, =  with three potential 

variables 
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,…,

in an n-plet { }nPP ,,1
K  with n potential variables

Hence from n CLs, we obtain   12 −n  distinct
potential systems!

Starting from any potential system, we can continue
the process and if it has N  “local” CLs, we can
obtain up to 12 −N  further distinct potential systems.
One can tell in advance whether or not one obtains
further potential systems.

In particular, one can show that if the multipliers
depend only on the local variables (x, t, u) then no
new potential system is obtained.

Any one of these potential systems could yield new
nonlocal symmetries or new nonlocal CLs for any
one of the other potential systems or the “given”
PDE system.
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Nonlocally related subsystems

Suppose we are given a system of PDEs
0},,,,S{ 1 =Muutx K   with the indicated  M

dependent variables.

A subsystem excluding one of the dependent
variables, say ,Mu   0},,,,{S 11 =−Muutx K   is
nonlocally related to the given system

0},,,,S{ 1 =Muutx K   if   Mu  cannot be directly

expressed from the equations of  0},,,,S{ 1 =Muutx K

in terms of   ,,tx  the remaining dependent variables
11 ,, −Muu K ,

and their derivatives.
Subsystems for consideration can arise following
an interchange of dependent and independent
variables of the given system

0},,,,S{ 1 =Muutx K
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Tree of Nonlocally Related Systems

Consequently, for a given system one obtains a tree
of nonlocally related (but equivalent) systems arising
from CLs and subsystems.

Each system in such an extended tree is equivalent
in the sense that the solution set for any system in
a tree can be found from the solution set for any
other system in the tree.
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Due to the equivalence of the solution sets and the
nonlocal relationship, it follows that any
coordinate-independent method of analysis
(quantitative, analytical, numerical, perturbation,
etc.) when applied to any system in the tree may
yield simpler computations and/or results that
cannot be obtained when the method is directly
applied to the given system.

Note also that the “given” system could be any
system in a tree!!
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EXAMPLES 
 

1. Nonlinear wave equation 
 
Suppose the given PDE is the nonlinear wave 
equation 
 

xxtt uucuutx ))((:0},,{ 2==U  
 

Directly, we obtain the singlet potential system 
(multiplier is 1) 
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By the invertible point transformation (hodograph) 
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One can show that there are only three more
multipliers of the form txxtutx ,,),,( =Λ  that yield
CLs for U for an arbitrary wave speed )(uc .

This yields three more singlet potential systems given
by
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Nonlocally related subsystems arise from UV
through XT :

0)(:0},,{},,{ 2 =−=≡ −
uuvv tucttvutvu LT

0))((:0},,{ 2 =−= −
uuvv xucxxvuX

One can show that the symmetry classifications of
these two PDEs are “equivalent”.  Hence we
concentrate on T.

One can show that there are only four multipliers of
the form

)(),(),(),(),,( 2222 uuvcuvcuucuctvu =Λ

that yield CLs for T for an arbitrary wave speed
c(u).
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The resulting new singlet potential systems include
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Consequently, one obtains the following (far from
exhaustive) tree of nonlocally related systems for the
nonlinear wave equation U for an arbitrary wave
speed  c(u).
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H2V

U T ≡≡≡≡ LX

TQTPUWUBUA

UAB UAW UAV UBW UBV UVW

UABV UABW UBVWUAVW

TR

XTP XTQ XTR TPQ TPR TQR

XTPR XTPQ TPQRXTQR

UV              ↔↔↔↔ XT

UABVW XTPQR
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• Point symmetry classification of the nonlinear wave equation U was
given in Ames, Lohner & Adams (1981)

•  Point symmetry classifications of potential system XT and subsystem
T were given in B & Kumei (1987)

• Partial point symmetry classifications of the potential systems TP and
TQ can be adapted from results presented in Ma (1990).

• Complete point symmetry classifications of potential systems UA, UB,
UW, TP, TQ are given in B & Cheviakov (2007).  Many nonlocal
symmetries for the nonlinear wave equation are found from each of
these nonlocally related systems in terms of specific forms of the
nonlinear wave speed c(u). In particular, the following new nonlocal
symmetries for the nonlinear wave equation U were found:
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For potential system UB, setting ,)()( 2
∫= duucuF  one finds that if

)(uF  satisfies the ODE
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with arbitrary constants ,,, 321 CCC then the potential system UB has
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that is a nonlocal symmetry of the nonlinear wave equation U.
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For potential system UW if   )(uc  satisfies the ODE
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with arbitrary constants ,, 21 CC  then it has the point symmetry
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that is a nonlocal symmetry of the nonlinear wave equation U.
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For potential system TP, if

,)( /12 ueuuc −=

it has the point symmetries
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that are both nonlocal symmetries of the nonlinear wave equation U
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For potential system TR, new nonlocal symmetries
are found for U from its point symmetries when

.)( 3/4−= uuc
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2.  Nonlinear Telegraph Equation 
 

Suppose the given PDE is the nonlinear telegraph 
(NLT) equation 
 

0))(())((:0},,{ =−−= xxxtt uGuuFuutxU  
 

Case (a) For arbitrary ),(),( uGuF  one obtains two 
singlet potential systems 
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Case (b) For arbitrary ),()(),( uGuFuG ′=  one obtains 
two more singlet potential systems 
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Case (c)  )(uF  arbitrary, uuG =)( :  In addition to the
first two singlet potential systems, there are two
more:
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UV1V2 { x, t, u, v1, v2}=0

UV1 { x, t, u, v1}=0

U {x, t, u}=0

UV2 { x, t, u, v2}=0

Tree of nonlocally related systems for NLT eqn for arbitrary F(u), G(u)
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UV1V2 { ...} = 0

UV1 { x, t, u, v1}=0

U { x, t, u}=0

UV2 { x, t, u, v2}=0

UV1V2B3B4 { x, t, u, v1, v2, b3, b4}=0

UB3 { x, t, u, b3}=0 UB4 { x, t, u, b4}=0

UV1B3 { ...} = 0 UV1B4 { ...} = 0 UV2B3 { ...} = 0 UV2B4{ ...} = 0 UB3B4 { ...} = 0

UV1V2B3 { ...} = 0 UV1V2B3 { ...} = 0 UV1B3B4 { ...} = 0 UV2B3B4 { ...} = 0

Tree of nonlocally related systems for NLT eqn for arbitrary G(u), F = G’  
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Consider now a classification problem for the nonlinear telegraph
(NLT) equation

.0))(())(( =−− xxxtt uGuuFu        (1)
For any ))(),(( uGuF  pair, we naturally obtain potential systems

;0],[

,0)()(],[

2

1

=−=
=−−=
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uvvuR

uGuuFvvuR
(2)

.0],,[

,0],,[

,0],[],,[

3

2

11

=−=
=−=
==

uwwvuH

vwwvuH

vuRwvuH

x

t                 (3)

For specific  (F(u), G(u))  pairs, the CL classification problem for
(2), etc. can yield additional CLs and hence further potential
systems for consideration [B & Temuerchaolu, J. Math. Anal.
Appl. 310, 459 (2005)]
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NONLOCAL SYMMETRIES

is a point symmetry of the potential system (2) if and
only if
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Theorem 1 [B, Temuerchaolu & Sahadevan, JMP 46, 023505
(2005)] The potential system (2) yields a nonlocal symmetry of the
NLT eqn (1) if and only if
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In the linearizable case: ).(,0 23251 ccccc −==

For any such pair (F(u), G(u)), the (u,v) potential system has the
point symmetry

vutx
X

∂
∂+

∂
∂+

∂
∂+

∂
∂= φητξ



32

with

vccctc
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vtc

duuFxc
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φ
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ξ

Modulo translations and scalings in u and G and scalings in F
(involving 5/7 parameters), one obtains six distinct classes of ODEs
for  (F(u), G(u))  where the scalar (u) eqn (1) has a potential
symmetry.



33

Classification Table for Potential Symmetries
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Modulo scalings and translations, two distinct
linearization cases occur:
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Case 1.

0

,0)(

=−
=−

tx

xt

uv

uuFv
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t
vuB

x
vuAX

∂
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∂
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Case 2.
0,012 =−=−− −−

txxt uvuuuv
admits

u
vuA

t
vuB

x
vuAuX

∂
∂+

∂
∂+

∂
∂−= − ),ˆ(),ˆ(),ˆ(1 ,

uxu logˆ += ,
with

.0

,0

ˆ

ˆ

=−+
=+

ABA

BA

vu

uv



37

Point Symmetry Classification of (u) Scalar NLT

Consider (u) scalar NLT eqn
xxxtt uGuuFu )]([])([ +=

Then
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is a point symmetry of the (u) scalar eqn iff

0))())((()2( =−− xxxtt uGuuFuX

for any soln of the (u) scalar eqn where )2(X  is
second extension of

utx
X

∂
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∂
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∂
∂= ητξ
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This leads to determining equations

,0)(]2)[()(2]2)[(
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which must hold for arbitrary values of  x, t, and u.

For arbitrary (F(u), G(u)), translations in x and t are symmetries.
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Classes of ))(),(( uGuF  yielding point symmetries of scalar (u) NLT eqn
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Theorem 2  Each point symmetry of the  (u,v) NLT potential system
that is a nonlocal symmetry of the NLT scalar  (u) eqn yields a
contact symmetry of the NLT (w) potential eqn given by

)()( xxxxtt wGwwFw +=

Theorem 3  A point symmetry of the NLT scalar (u) eqn yields a
point symmetry of the (u,v) NLT potential system for all cases except
when ).,())(),(( 34 −−= uuuGuF
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CONSERVATION LAWS

)),,,(),,,,(( VUtxVUtx φξ  are multipliers for a CL of
NLT potential system iff

( )
( ) ,0],[],[

,0],[],[

21
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VURVURE

VURVURE

V
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φξ
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for arbitrary diff. functions )),((),,(( txVtxU .  This
yields determining eqns:
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       (4)
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Then for any solution of (4), the conserved densities are

∫ ∫

∫∫∫

+=
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U
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Classification results for CLs

Solution of determining system reduces to study of system of two
functions
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Three cases arise:
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Case I: F(u) is arbitrary

F(u) G(u) Multipliers
arb u ( )2

2
1,),( txt −=φξ

( )t−= ,1),( φξ
arb 1/u ( )

∫++=

=
U

dsssFxVUV

VU

)(,(),(

,),(

2
2
1φξ

φξ
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Case II: 0)(,0)( ≠≠ uduh

2)( β
γ

γ
α +=

′−

G

GF )(,1(),( )(
11 βφξ γ

αβα += + GAe Vt )

),,,)(,(),( 1122 VUtx −−−= φξφξ
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=

=
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Case III: 0)(,0)( == uhud

Using symmetry analysis (substitution + invariance under solvable three-
parameter group), ODE 0)( =uh
can be solved in terms of elementary functions (for G(u)).

Then note that F(u) = G(u) + const is a particular soln of resulting linear
ODE d(u) = 0 ⇒ general soln.

Consequently, for  32
2

1 )()()( βββ ++= uGuGuF , 31
2

2 4 βββ ≠

there are four highly nontrivial conservation laws when

.tan,tanh,,/1,)( uueuuuG u=

[In the case of a "perfect square" 31
2

2 4 βββ = , there are two conservation
laws.]
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3.  Planar Gas Dynamics (PGD) Equations

Suppose the given system of PDEs is the planar gas
dynamics (PGD) equations. In the Eulerian
description, one has the Euler system
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in terms of entropy density ),,( ρpS  constitutive
function ),( 1−ρpB  is given by

pSSpB /),( 21
ρρρ −=−
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In the Lagrangian description, in terms of the 

Lagrange mass coordinates ,ts =  ,)(
0
∫=

x

x
dy ξξρ one 

has the Lagrange system 
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We now show that the potential system 
framework yields a direct connection between the 
Euler and Lagrange systems.  As well, we derive 
other equivalent descriptions! 

 
We use the Euler system as the given system.  The 
first equation is a CL and through it, we introduce a 
potential variable r and obtain the potential system 
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In order to obtain a nonlocally related subsystem, first consider an 
interchange of dependent and independent variables in  G with r = 
y and t = s as independent variables; x, v, p, ρ as dependent 
variables and let q = 1/ ρ to obtain the 1:1 equivalent system 
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A nonlocally related subsystem of  G0  is obtained by excluding  x  
through    
xys = xsy to obtain the Lagrange system  L{ y, s, v, p, q} = 0 
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A second conservation law of the Euler system
obtained with the multipliers

)0,1,(),,( 321 v=ΛΛΛ

yields a second potential variable w.  The couplet
potential system containing both of the obtained
variables r and w is given by
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From the third equation of W, one can introduce a
third potential variable z
and obtain potential system
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The Lagrangian system L , has a nonlocally related
subsystem
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W{  x, t, v, p, ρ, r, w}=0

G{ x, t, v, p, ρ, r}=0 ⇔ G0 { y, s, x, v, p, q}=0 W{  x, t, v, p, ρ, w}=0

L {  y, s, p, q}=0

E{ x, t, v, p, ρ}=0

Z{  x, t, v, p, ρ, r, w, z}=0

Z{  x, t, v, p, ρ, w, z}=0

L {  y, s, v, p, q}=0

Tree of nonlocally related systems for PGD equations
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Starting from the Lagrange system L  , one can obtain
three singlet potential systems from three sets of
multipliers

)0,,(),0,1,0(),0,0,1()),(),,(),,(( 321 sysysysy =µµµ
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LW 1W2{  y, s, v, p, q,w1,w2}=0

LW 1{  y, s, v, p, q,w1}=0

L {  y, s, p, q}=0

L {  y, s, v, p, q}=0

LW 2{  y, s, v, p, q,w2}=0 LW 3{  y, s, v, p, q,w3}=0

LW 1W3{  y, s, v, p, q, w1,w3}=0 LW 2W3{  y, s, v, p, q, w2,w3}=0

LW 1W2W3{  y, s, v, p, q, w1,w2,w3}=0

Extension of tree of nonlocally related systems for Lagrange system for PGD eqns
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Two more CLs arise for the Lagrange system L ,
when one considers multipliers of the form

.3,2,1),,,,,( =iQPVsyiµ

In general, one can show that

),,,(

,

,),(

33

2

31

QPy

Vs

QPBPy

µµ
νβαµ

δµβαµ

=
++=

++−=

where  α, β,ν,δ  are abitrary constants and  µ3(y,P,Q)
is any solution of PDE

0)),(( 3
3 =+

∂
∂−

∂
∂ βµµ

QPB
PQ

The two extra CLs arise (for arbitrary constitutive
function B(p,q))
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(1) from conservation of energy

0)()),(( 2
2
1 =

∂
∂++

∂
∂

pv
y

qpKv
s

where K(p,q) is a solution of eqn

0),( =+− pKqpBK pq

(2) from conservation of entropy

0),( =
∂
∂

qpS
s

where S(p,q) is a solution of eqn

0),( =− pq SqpBS
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For multipliers restricted to dependence on the
independent variables (y,s), no further potential
systems (just the first three) arise in the case of a
Lagrange PGD system L   with a generalized
polytropic equation of state

0)(,
)(

),( ≠′′= pM
q

pM
qpB
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Remarks

• Extended trees hold for an arbitrary constitutive function

• Either Euler system or Lagrange system can be given system—
tree will not change

• In Akhatov, Gazizov & Ibragimov (1991) a complete group
classification with respect to constitutive function was given
separately for Euler and Lagrange systems but connections
between systems were heuristic

• To systematically construct nonlocal symmetries of the Euler and
Lagrange systems one needs to do the group classification
problem for all systems in an extended tree with respect to the
constitutive function (as well as consider other possible extended
trees for specific constitutive functions followed by point
symmetry analysis)
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• E.g., for Chaplygin gas ]/],([ qpqpB −= ,  subsystem

0},,,{ =qpsyL

has the point symmetry (not in AGI) given by

,3X 2

q
yq

p
py

y
y

∂
∂+

∂
∂−

∂
∂−=

which yields a nonlocal symmetry for E and L.
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Further extended trees for PGD eqns for specific constitutive functions 
 
Example A:  For ),1()/1,( pepB += ρρ  system 0},,,,,{ =rpvtx ρG  has a 
family of CLs: 
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for arbitrary f(r).  This CL can be used to replace the 4th eqn of  
0},,,,,{ =rpvtx ρG   to introduce potential variable  c  and potential 

system 
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Example B:  For Chaplygin gas, ,)/1,( ρρ ppB −=  system
0},,,,,{ =rpvtx ρG   has a family of CLs:

0
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for arbitrary f(r) to yield a family of potential systems
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One can show that new nonlocal symmetries arise for the Chaplygin
gas Euler system only when const.)(,)( == rfrrf
For ,)( rrf =  this Chaplygin gas system has symmetries
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• Symmetry 
1

X D  is nonlocal for both the Euler and Lagrange

systems

• Symmetry 
2

X D  is nonlocal for the Euler system but local for the

Lagrange system

• Hence in AGI, symmetry 
1

X D  was not obtained
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