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Nonclassical Method for finding solutions 
of PDEs 
 

 
Consider PDE system  R{ x;u} of  N  PDEs of order  k  with  n  
independent variables ),,( 1 nxxx K=  and  m  dependent variables  

),,,( 1 muuu K=  given by 
 

,,,1,0),,,,( NuuuxR k
KK ==∂∂ σσ           (1) 

 
that has point symmetry with infinitesimal generator  
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or, equivalently, in evolutionary form, infinitesimal generator 
 

.)),(),((X̂ µ
µµ ξη

u
uuxux i

i

∂
∂−=              (2b) 

 
Let )),(,),,((),( 1 uxuxux nξξξ K=  and assume that .0),( ≡/uxξ  
 
Definition ),(xu Θ=  with components ,,,1),( mvxu K=Θ= νν  is a 
resulting invariant solution of PDE system R{ x;u} if and only if 
 

(i)  )(xu νν Θ=  is an invariant surface of point symmetry (2) for 
each  ;,,1 mK=ν  

  (ii)  )(xu Θ=  is a solution of  R{ x;u}. 
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Hence )(xu Θ=  is a resulting invariant solution of PDE system 
R{ x;u} if and only if  )(xu Θ=  satisfies 
 

(i) 0))(X( =Θ− xu νν  when  mxu ,,1),( K=Θ= ν     (3a)  
      mxu

xu
,,1,)(X(

)(
K=Θ−↔

Θ=
ννν          (3b) 
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  (ii)  0),,,,( =∂∂ uuuxR k

K
σ  when  Nxu ,,1),( K=Θ= σ    (4a) 

          NxxxxR k ,,1,0))(,),(),(,( KK ==Θ∂Θ∂Θ↔ σσ    (4b) 
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Equations (3) and (4) define the classical method to obtain 
particular solutions of a PDE system  R{ x;u}. 
 
Classical method  
In summary, )(xu Θ=  is a solution (invariant solution) of PDE 
system R{ x;u} obtained through the classical method [Lie (1881)] 
if and only if there exists a Lie group of point transformations with 
infinitesimal generator  X given by (2a) X̂[  given by (2b)], with  
kth extension (prolongation) )(X k , such that 
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Having found point symmetry with infinitesimal generator (2a) 
through solving the linear system of determining equations (5), one 
can proceed in two ways to solve the systems of equations (6) and 
(7) to find an invariant solution ).(xu Θ=   
 
(1)  Invariant form method 
Here one first solves invariant surface conditions (6) by explicitly 
solving corresponding characteristic equations for )(xu Θ=   
 

),(),(),(),( 1

1

1

1

ux

du

ux

du

ux

dx

ux

dx
m

m

n

n

ξηξξ
===== LL .   (8) 

 
If ),,(,),,(),,(,),,( 111 uxhuxhuxzuxz mn

KK
−  are 1−+ mn  

functionally independent constants of integration that arise from 
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solving characteristic system of ODEs (8) with Jacobian 
,0),,(/),,( 11 ≠∂∂ mm uuhh KK  then the general solution )(xu Θ=  

of invariant surface condition equations (6) is given implicitly by 
invariant form 
 

)),,(,),,((),( 11 uxzuxzHuxh n−= K
νν         (9) 

 
where νH  is an arbitrary differentiable function of its arguments, 

.,,1 mK=ν   Note that ),,(,),,(),,(,),,( 111 uxhuxhuxzuxz mn
KK

−  
are 1−+ mn  functionally independent  invariants of the one-
parameter Lie group of point transformations with infinitesimal 
generator (2a) -> 1−+ mn   canonical coordinates for the one-
parameter Lie group of point transformations with infinitesimal 
generator (2a).   
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Let ),( uxz n  be the (n + m)th canonical coordinate satisfying  
.1X =nz   If  PDE system R{ x;u} is transformed by the 

corresponding invertible point transformation into PDE system 
S{ z;h} with independent variables ),,( 1 nzzz K=  and dependent 
variables ),,,( 1 mhhh K=  then transformed PDE system S{ z;h} has 
translation symmetry   
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Thus variable nz  does not appear explicitly in transformed PDE 
system S{ z;h}, and hence the transformed PDE system has 
particular solutions of the form (9) that yield implicitly, specific 
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functions )(xu Θ=  which are invariant solutions of PDE system  
R{ x;u}, i.e., PDE system  R{ x;u} has invariant solutions implicitly 
given by invariant form (9).   
 
These invariant solutions are found by solving a reduced system of 
DEs with 1−n  independent variables 11 ,, −nzz K  and m dependent 
variables .,,1 mhh K   11 ,, −nzz K  are commonly called similarity 
variables.  
 
 The reduced system of DEs is found by substituting invariant form 
(9) into given PDE system R{ x;u}. Note that if ,0/ ≡∂∂ uξ  then 

.1,,1),( −== nixzz ii
K  When R{ x;u} (5.1)  has two independent 

variables, the reduced system is an ODE system with independent 
variable .1zz =  
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(2) Direct substitution method 
This procedure is essential if one is unable to solve explicitly the 
invariant surface condition equations (6), i.e., if one is unable to 
obtain the general solution of characteristic ODE system (8).  One 
can assume .0),( ≠uxnξ   Then (6) can be written as 
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      (10) 

 
From (10) and differential consequences, any term involving 
derivatives of components of u with respect to independent 
variable nx  can be expressed in terms of components of  x and  u  
as well as derivatives of components of  u with respect to the 
independent variables .,, 11 −nxx K    
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After directly substituting (10) and its differential consequences for 
any partial derivative with respect to nx  appearing in R{ x;u}, one 
obtains a reduced DE system directly involving m dependent 
variables ,,,1 muu K  1−n  independent variables ,,, 11 −nxx K  
derivatives of  muu ,,1

K  with respect to ,,, 11 −nxx K  and parameter 
nx .  

 
A solution );,,( 11 nn xxxu −Φ= K  of this reduced DE system yields 
an invariant solution  )(xu Θ=  of R{ x;u} provided that the 
invariant surface condition equations (6) or, equivalently the given 
PDE system R{ x;u} itself, are also satisfied.   
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In the case of two independent variables, the reduced system of 
DEs is an ODE system.   
 
Here the constants of integration in the general solution of the 
reduced ODE system are arbitrary functions of the parameter nx , 
and these arbitrary functions are then determined by substituting 
this general solution into either the invariant surface condition 
equations (6) or the given PDE system R{ x;u}. 
 
 
For examples of invariant solutions of PDEs, see the books of 
Ovsiannikov [(1962), (1982)], Bluman & Cole (1974), Olver 
(1986), Bluman & Kumei (1989), Stephani (1989), Hydon (2000), 
Bluman & Anco (2002) and Cantwell (2002). 
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Nonclassical method 
 
The nonclassical method (B 1967), generalizes and includes Lie’s 
classical method for obtaining solutions of PDEs.   
 
Here one first seeks functions 

,,,1,,,1),,(),,( mniuxuxi
KK == µηξ µ  so that (2a) is a 

“symmetry” (“nonclassical symmetry”) of augmented PDE 
system A{ x;u} consisting of R{ x;u}, invariant surface equations 

=∂ ),,( uuxI ν ,,,1,0),(),( m
x

u
uxux

i
i

K==
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∂− νξη

ν
ν     (11) 

 
and differential consequences of (11).   
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Consequently, one obtains an overdetermined set of nonlinear 
determining equations for unknown functions  

.,,1,,,1),,(),,( mniuxuxi
KK == µηξ µ   

 
It is straightforward to show that, for any set of 

,,,1,,,1),,(),,( mniuxuxi
KK == µηξ µ  (2a) is a symmetry of 

invariant surface condition equations (11)  
 
From this it follows that the nonclassical method includes Lie’s 
classical method.  
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Resulting set of determining equations is nonlinear due to 
substitution of equations (11) (each written in solved form with 
respect to some derivative term) and their differential 
consequences into the symmetry determining equations (5) that 
now hold only for solutions of the augmented PDE system.   
 
In the nonclassical method, the invariant surface condition 
equations (11) are essentially a set of constraint equations of a 
particular form.  
 
In particular, the nonclassical method is equivalent to seeking all 
solutions of R{ x;u} of form (11) for any set of 

.,,1,,,1),,(),,( mniuxuxi
KK == µηξ µ   
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Set of determining equations satisfied by 
,,,1,,,1),,(),,( mniuxuxi

KK == µηξ µ  are the compatibility 
conditions for existence of solutions of augmented PDE system 
A{ x;u} that includes R{ x;u} and constraint equations (11). 
 
A “nonclassical symmetry” is not a symmetry of R{ x;u} unless the 
infinitesimals yielding an infinitesimal generator (2a) yield a point 
symmetry of  R{ x;u}.  
 
Otherwise, a mapping resulting from such an infinitesimal 
generator maps no solution of R{ x;u} into a different solution of 
R{ x;u}.  It just maps the solution obtained by the nonclassical 
method into itself!   
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Strictly speaking, the nonclassical method is not a “symmetry” 
method but an extension of Lie’s symmetry method (“classical 
method”) with the purpose of finding specific solutions of PDEs. 
    
 
The situation for a scalar PDE with two independent variables 
 
Now consider situation of a scalar PDE with two independent 
variables.   
 
Let ).,,(),,,(,, 2121 utxutxtxxx τξξξ ====   
 
Then invariant surface condition equations (11) become invariant 
surface condition equation  
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).,,(),,(),,( utxuutxuutx tx ητξ =+          (12) 
 
For a specific set of ),,,(),,,(),,,( utxutxutx ητξ  the general 
solution of invariant surface condition (12) can be represented in 
the form 
 

,const),,( 1cutxz ==   (similarity variable)     (13a) 
 

).(const),,( 2 zhcutxH ===          (13b) 
 
After solving equation (13b) for u, one obtains ansatz 
 

))),,((,,( utxzhtxu φ=             (14) 
 
for solutions of the given scalar PDE.  
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If a specific set of )),,(),,,(),,,(( utxutxutx ητξ  is a set of 
infinitesimals for a point symmetry of the scalar PDE, then the 
dependence of  φ  on x, t, and h(z) is explicit in ansatz (14); h(z) is 
an arbitrary function of the similarity variable z.   
 
Here, substitution of the ansatz (14) into the scalar PDE yields a 
reduced ODE of order at most k with independent variable z and 
dependent variable h(z).   
 
Each solution of this ODE yields an invariant solution, obtainable 
by the classical method, of the scalar PDE.  
 
If ,0≡= uu τξ  then ),,(),,( txzutxz ≡  and ansatz (14) reduces to       
 

))).,((,,( txzhtxu φ=              (15) 
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If ,0≡== uuuu ητξ  ansatz (14) further reduces to  
 

)).,((),(),( txzhtxBtxAu +=               (16) 
 
In the ansatz (16), functions ),( txA  and ),( txB  are explicitly 
known for a specific set of functions )).,,(),,(),,(( utxtxtx ητξ  
 
Suppose one obtains the sets of all infinitesimals 

)),,(),,,(),,,(( utxutxutx ητξ  of symmetries 

utx utxutxutx ∂
∂

∂
∂

∂
∂ ++= ),,(),,(),,(X ητξ  of augmented system 

A{ x;u} consisting of the given scalar PDE, the constraint invariant 
surface condition equation (12), and the differential consequences 
of (12).   



 20

 
Then it follows that the solutions ),( txu Φ=  of the scalar PDE, 
arising from the nonclassical method, include all solutions of the 
scalar PDE of the form ))),,((,,( utxzhtxu φ=  where h(z) satisfies 
a reduced ODE.   
 
Hence the nonclassical solutions of the scalar PDE include all 
solutions of the PDE obtained by the direct method of Clarkson & 
Kruskal (1989) since the direct method aims to find all solutions of 
a scalar PDE that are of the ansatz (14) with the restriction that 

),(),,( txzutxz ≡  [Nucci & Clarkson (1992)]. 
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From the nature of the constraint invariant surface condition 
equation (12), without loss of generality, in using the nonclassical 
method, two simplifying cases need only be considered when 
solving the determining equations for )),,,(),,(),,(( utxtxtx ητξ  
namely, .1,0;1 ≡≡≡ ξττ    
 
This follows from the observations that if 
 
(1) ,0≠τ  the constraint equation (12) can be divided by τ, and 
hence set ,1≡τ  so there are only two independent infinitesimals  
 
(2) ,0≡τ ,0≠ξ  the constraint equation (12) can be divided by ξ, 
and hence set ,1≡ξ  so here there is only one independent 
infinitesimal.  
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Note that for a given set of infinitesimals )),,(),,(),,(( utxtxtx ητξ  
that satisfy the nonlinear determining equations, one can use either 
the invariant form or direct substitution method to find the 
resulting solutions of the scalar PDE. 
 
Examples 
 
(1) Heat equation 
The first PDE considered through the nonclassical method was the 
linear heat equation [B (1967), B & Cole (1969)] 
 

.0=− xxt uu                (17) 
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Case 1.  The classical method 
The classical method determining equation (5) that yields the point 
symmetries utx utxutxutx ∂

∂
∂
∂

∂
∂ ++= ),,(),,(),,(X ητξ  of the linear 

heat equation (17) is given by 
 

.0)()2()2(

2)2()(22 232

=−+−−++−+
+−+++++

xxtxxutxxtxtxx

xtxxuuxutxuxuxxtuxuutxuu

uu

uuuuuuuuu

ηηηξξξττ
τηξξττξτ

                   (18) 
 
Equation (18) must hold for arbitrary values of .,,,,, xtxt uuuutx  
 
Thus (18) splits into nine equations.  
 
This yields the well-known general solution of  (18): 
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),,(])([),,(

,2)(),,(

,),(),,(

62
12

4
1

432
1

5
2

42

4321

txgutxxutx

tttutx

xttxtxutx

+++−−=

++=≡

+++=≡

αααη
αααττ

ααααξξ
     (19) 

 
where 61 ,, αα K  are arbitrary constants and, due to the linearity of 
PDE (17), ),( txg  is an arbitrary solution of the heat equation, i.e., 

.0=− xxt gg    
 
The resulting invariant solutions of the heat equation appeared in B 
(1967) and B & Cole (1969). 
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Case 2.  The nonclassical method: 1≡τ  
If ),( txu Φ=  satisfies the augmented PDE system A{ x;u} 
consisting of the linear heat equation (17), the corresponding 
constraint invariant surface condition  
 

xt uutxutxu ),,(),,( ξη −= ,             (20)  
 
and differential consequences of (20), it follows that all t-
derivatives of u and all x-derivatives of  u  in the classical 
symmetry determining equation (18) can be as expressed as 
polynomials in xu ,  with coefficients that are functions of  x, t, and  
u.   
 
In particular, after differentiating (20) with respect to x, and then 
replacing xxu )( tu=  by the right-hand side of (20), one obtains 
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.)()( 22

xuxxuxxt uuu ξξξηξηη −+−+−=          (21) 
 
After replacing tu  by the right-hand side of (20), and xtu  by the 
right-hand side of (21), the classical method determining equation 
(18) for infinitesimals )),,(),,,(),,,(( utxutxutx ητξ  becomes the 
nonclassical method determining equation for infinitesimals 

)),,(),,,(( utxutx ηξ :  
 

.0)2(

)222()22( 23

=+−+
+−−−+−−+

xxxt

xuxxutxxxuuuxuxuu uuu

ηξηη
ηξξξηξξξξηξξ

 

                (22) 
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Equation (22) is a polynomial equation in ,xu  and hence splits into 
four equations whose solution is given by 
 

),,(),(

),,(

txDutxC

tx

+=
=

η
ξξ

           (23) 

 
where )},(),,(),,({ txDtxCtxξ  is any solution of the nonlinear 
system 
 

.02

,02

,022

=+−
=+−

=++−

DDD

CCC

C

xxxt

xxxt

xxxxt

ξ
ξ

ξξξξ
             (24) 
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This case was considered in more detail in B & Cole (1969).  Note 
that due to the form of (23), it follows that here all obtained 
solutions of the linear heat equation (17) are of the form (16). 
 
Case 3.  The nonclassical method: 1,0 ≡≡ ξτ    
Here it is easy to show that after using the conditional invariant 
surface condition equation η=xu  and its differential 
consequences, classical method determining equation (18) for 
infinitesimals )),,(),,,(),,,(( utxutxutx ητξ  becomes nonclassical 
method determining equation for infinitesimal ),,( utxη : 
 

.022 =−++ txxxuuu ηηηηηη          (25) 
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Note that  
 

utx ),(
2

1ση −=             (26) 

 
solves the determining equation (25) if ),( txv σ=  is any solution 
of the Burgers equation 
 

.0=−+ xxxt vvvv             (27) 
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Thus equation (26) together with the conditional invariant surface 
condition equation ,η=xu  yields the Hopf-Cole transformation 

u

u
v x2−=  

that relates solutions of the Burgers equation (27) and the linear 
heat equation (17) through the nonclassical method!  This case was 
first considered in Fushchich et al. (1992).  
 
Note that in this case, due to the form of an obtained infinitesimal 
that satisfies the determining equation (25), a resulting solution of 
the linear heat equation (17) is of the form 
 

)).(,,( thtxu φ=                 (28) 
 
where h(t) satisfies a reduced ODE. 
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(2) Boussinesq equation 
The nonclassical method essentially lay dormant for two decades.  
A significant discussion of it appeared in the papers of Olver & 
Rosenau [(1986), (1987)] in the context of finding solutions of 
PDEs subject to differential constraints.   
 
A revived interest in the nonclassical method was ignited by the 
remarkable paper of Clarkson & Kruskal (1989), in which they 
exhibited solutions of the Boussinesq equation 
 

,02 =+++ xxxxxxxtt uuuuu          (29) 
 
not obtainable by the classical method.   
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In this paper, the direct method was introduced to find solutions of 
the Boussinesq equation (29) that are of the form (15).   
 
These were obtained by directly substituting the ansatz (15) into 
the Boussinesq equation (29) to find all cases leading to a reduced 
ODE for some )).,(( txzh   
 
In a “tour de force”, Clarkson and Kruskal found all such solutions 
of (29).  For example, their solutions of (29), given by 
 

const, ,,)()(),( 6
6
12522 =+=+−= − λλλ txtztxtzhttxu   (30) 

 
with h(z) satisfying the reduced ODE 
 

,0)505( 2 =′−+′+′′′ zwwww λλ          (31) 
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were not obtainable by the classical method, i.e., as invariant 
solutions from the well-known point symmetries of the Boussinesq 
equation (29) with infinitesimals 
 

,2)(),,(

,2)(),,(

,)(),,(

1

31

21

uuutx

ttutx

xxutx

αηη
ααττ
ααξξ

−==
+==
+==

         (32) 

 
where ,,, 321 ααα  are arbitrary constants. 
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As shown above, all solutions arising from the direct method must 
arise from the nonclassical method.   
 
In their seminal paper, Levi & Winternitz (1989) show how to use 
the nonclassical method to obtain all Clarkson and Kruskal 
solutions of the Boussinesq equation (29).   
 
They consider the nonclassical method for the case ,1≡τ  and show 
that the resulting infinitesimals are: 
 

)],()(2)()((2 ))()(4

])()(([2))(2)()((2[)(2),,(

),()(),(

2

22

ttttxtt

ttxtttututx

txttx
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                     (33) 
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where )(tα  and )(tβ  are solutions of ODE system 
 

.042

,042
2

3

=−′+′′
=−′+′′

βαβαβ
αααα

          (34) 

 
The general solution of ODE system (34) is easily obtained and for 
any solution of ODE system (34), the general solution of the 
constraining invariant surface condition equation (12) is:  

,)()()(,))()(()()(
0

22
∫−=+−=
t

dssKsxtKztxtzhtKu ββα   (35) 

where .)(exp)(
0









−= ∫

t

dsstK α  
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Substitution of (35) into Boussinesq equation (29) yields  
 

22)4( )(22)( BAzAwwBAzwwww +=+′++′+′′+     (36) 
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Note that the solutions obtained by the classical method result from 
the two particular sets of solutions 
 

const, const, ,
2

)(,
2

1
)( ==

+
=

+
= DC

Ct

D
t

Ct
t βα   

 
and const )(,0)( === Ett βα  
 
of ODE system (34). 
 
 
 
 
 
 



 38

References 
 
Bluman (1967) Construction of Solutions to Partial Differential 
Equations by the Use of Transformation Groups, Ph.D. Thesis, 
Caltech. 
 
Bluman & Cole (1969) The general similarity solution of the heat 
equation J. Math. Mech. 18 1025-1042. 
 
Ovsiannikov (1962) Group Properties of Differential Equations, 
Nauka, Novosibirsk 
 
Ovsiannikov (1982) Group Analysis of Differential Equations, 
Academic Press, New York 



 39

Bluman & Kumei (1989) Symmetries and Differential Equations, 
Springer, New York 
 
Bluman & Anco (2002) Symmetry and Integration Methods for 
Differential Equations, Springer, New York 
 
Clarkson & Kruskal (1989) New similarity solutions of the 
Boussinesq equation. J. Math. Phys. 30 2201-2213 
 
Levi & Winternitz (1989) Non-classical symmetry reduction: 
Example of the Boussinesq equation. J. Phys. A22 2915-2924 
 
Nucci & Clarkson (1992) The nonclassical method is more general 
than the direct method for symmetry reductions.  An example of 
the Fitzhugh-Nagumo equation. Phys. Lett. A164 49-56 



 40

Fushchich, Shtelen, Serov, & Popovych (1992) Conditional 
symmetries of the linear heat equation. Dokl. Ukr. Acad. Nauk A12 
20-26. 
 
Olver & Rosenau (1986) The construction of special solutions to 
partial differential equations. Phys. Lett. A114 107-112. 
 
Olver & Rosenau (1987) Group-invariant solutions of differential 
equations. SIAM J. Appl. Math. 47 263-278. 
 
Fokas & Liu (1994) Generalized conditional symmetries and exact 
solutions of nonintegrable equations Teoret. Mat. Fiz. 99 263-277. 


