Nonclassical Method for finding solutions
of PDEs

Consider PDE systenR{x;u} of N PDEs of orderk with n
independent variables=(x',...,x") and m dependent variables

u=(u,...,u™), given by
R (x,u,0u,...,0"u) =0, o=1,...,N, (1)

that has point symmetry with infinitesimal generato

X =& (x,u)%m”(x,u)mi,,, (2a)



or, equivalently, in evolutionary form, infinitesahgenerator

- i 0

X =" (xu) =& (x,uu)—-. (2b)
ou”

Let &(x,u) = (£ (X,U),...,"(x,u)) and assume thdi(x,u) £ 0.

Definition u = ©(x), with componentsl” =©"(x),v=1...,m, is a
resultinginvariant solution of PDE systeniR{ x;u} if and only if

(i) u” =©"(X) is an invariant surface of point symmetry (2) for
eachv =1,...,m,
(i) u=0(x) is a solution ofR{x;u}.



Henceu =0O(x) Is a resulting invariant solution of PDE system
R{x;u} if and only if u=0(x) satisfies

(i) X(u" —©"(x))=0whenu= @(x), v=1...,m (3a)
o X(u" -0"(x) o0V v=1].. (3b)
6@” (x) 3

o 1Y (X%,0(X) - & (x,0(X)) =0,v=1....m (3c)
X =0,v=1...,m (3d)

Vv
u=G)(x)

>

(i) R?(x,u,0u,...,0u)=0whenu=0(x),c =1...,N (4a)
o R7(x,0(X),00(X),...,0"0(x)) =0,0 =1,...,N  (4b)
=0,0=1...,N. (4c)

u=0(x)



Equations (3) and (4) define theassical methodto obtain
particular solutions of a PDE systeR{ x;u}.

Classical method
In summary,u=0(x) Is a solution (invariant solution) of PDE

systemR{ x;u} obtained through thelassical methodLie (1881)]
If and only if there exists a Lie group of poirdrisformations with

infinitesimal generator X given by (28X given by (2b)], with
kth extension (prolongatio¥ ', such that

XY R(x,u,du,...,0u) k =0,0=1...,N;

R” (x,u,du,...,0"u)=0,4=1,...,N
AU u=0(x) =0v=>1...m (6)
R’ (x,u,0u,...,0" u)u o0 =0,0=1,...,N. (7)




Having found point symmetry with infinitesimal geatr (2a)
through solving the linear system of determiningapns (5), one
can proceed in two ways to solve the systems ohtemps (6) and
(7) to find an invariant solution = O(Xx).

(1) Invariant form method
Here one first solves invariant surface conditi@@)sby explicitly
solving corresponding characteristic equationsufero(x)

dx* dx" du’ du™

; == =— == _ (8)
s (x,u) ¢ (xu) 7 (xu) ¢ (x,u)

If  zZ'(x.u),..., 2" (x,u),h'(x,u),...,hA""(x,u), are n+m-1
functionally independent constants of integratibattarise from



solving characteristic system of ODEs (8) with Jaao
a(h',...,n™)/a(u,...,u™) 20, then the general solutiom= O(Xx)
of invariant surface condition equations (6) isegivumplicitly by
Invariant form

h” (x,u) = H" (Z'(x,u),..., 2" (x,u)), (9)

where H" is an arbitrary differentiable function of its argents,
v=1...,m Note thatz'(x,u),...,z" " (x,u),h*(x,u),...,h"(x,u),
are n+m-1 functionally independent Invariants of the one-
parameter Lie group of point transformations wittinitesimal
generator (2a) ->n+m-1 canonical coordinates for the one-

parameter Lie group of point transformations wittinitesimal
generator (2a).



Let z"(x,u) be the { + m)th canonical coordinate satisfying

Xz"=1. If PDE systemR{xu} is transformed by the
corresponding invertible point transformation INRDE system

S zh} with independent variablegz =(z',...,z") and dependent
variablesh = (h',...,h™), then transformed PDE systes$fizh} has
translation symmetry

(z)' =7, i=1...,n-1

()" = 7" +¢,

()" =h", v=1....m

Thus variablez" does not appear explicitly in transformed PDE

system ${zh}, and hence the transformed PDE system has
particular solutions of the form (9) that yield implicithgpecific



functionsu = ©(x) which are invariant solutions of PDE system
R{x;u}, .e., PDE systemR{x;u} has invariant solutions implicitly
given by invariant form (9).

These invariant solutions are found by solvingduoed system of
DEs with n-1 independent variables,...,z"" andm dependent
variablesh',...,h™ . z',...,z"" are commonly calledimilarity

variables.

The reduced system of DEs is found by substitutnvgniant form
(9) into given PDE systeR{x;u}. Note that if 3¢/du =0, then
Z =7'(x),i =1...,n—-1. WhenR{x;u} (5.1) has two independent
variables, the reduced system is an ODE systemingpendent
variablez = z*.



(2) Direct substitution method

This procedure is essential if one Is unable toeseixplicitly the
Invariant surface condition equations (6), i.e., iEas unable to
obtain the general solution of characteristic Op&team (8). One

can assumé”(x,u) # 0. Then (6) can be written as

ou"” /7 ’(X,U) L& (x,u) ou” B
ox"  &"(x,u) Z_;‘ E"(x,u) oX' v=1..m (10)

From (10) and differential consequences, any ternolwng
derivatives of components ofi with respect to independent

variable X" can be expressed in terms of componentx ahd u
as well as derivatives of components of with respect to the

independent variables, ..., x"™



After directly substituting (10) and its differential cegsiences for
any partial derivative with respect t0 appearing irR{x;u}, one
obtains a reduced DE system directly involving dependent
variables u',...,u™ , n-1 independent variablesx’,...,x""

derivatives of u',...,u™ with respect to<',...,x"" andparameter

n

X

A solutionu = d(x*,...,x" " x") of this reduced DE system yields
an invariant solution u=0(x) of R{x;u} provided that the

Invariant surface condition equations (6) or, eqanty the given
PDE systenR{x;u} itself, are also satisfied.
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In the case of two independent variables, the retlsystem of
DEs is an ODE system.

Here the constants of integration in the generdédtism of the
reduced ODE system are arbitrary functions of tammeterx”,
and these arbitrary functions are then determinedubstituting
this general solution into either the invariantfaoe condition
equations (6) or the given PDE systBifx;u}.

For examples of invariant solutions of PDEs, see ltboks of
Ovsiannikov [(1962), (1982)], Bluman & Cole (1974), vex
(1986), Bluman & Kumei (1989), Stephani (1989), Hyd2a00),
Bluman & Anco (2002) and Cantwell (2002).
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Nonclassical method

The nonclassical method (B 1967), generalizes ariddes Lie’s
classical methoébr obtaining solutions of PDEs.

Here one first seeks functions
E(x,u),n*(xu),i=1....,n,u=1....m, so that (2a) is a
“symmetry” (“nonclassical symmetry”) of augmented PDE

systemA{ x;u} consisting ofR{x;u}, invariant surface equations

1V (x,u,0u) =n" (x,u) = & (x,u)au.v =0, v=1...,m, (11)

ox'

and differential consequences of (11).
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Consequently, one obtains an overdetermined seatoaofinear
determining equations for unknown functions

E'(x,u),n*(x,u),i=1....,n, u=1....m

It Is straightforward to show that, for any set of
E(x,u),n”(x,u),i=1...,n,u=1...,m (2a) is a symmetry of
Invariant surface condition equations (11)

From this it follows that the nonclassical methogludes Lie’s
classical method.
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Resulting set of determining equations iIs nonlineare to
substitution of equations (11) (each written invedl form with
respect to some derivative term) and their diffaagn
consequences into the symmetry determining equsat{dh that
now hold only for solutions of the augmented PDE system.

In the nonclassical method, the invariant surfacendtmn
equations (11) are essentially a set of constragutations of a
particular form.

In particular, the nonclassical method is equivatenseeking all
solutions of R{xu} of form (11) for any set of

E'(x,u),n*(x,u),i=1....,n, u=1....m
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Set of determining equations satisfied by
E(x,u),n*(x,u),i=1...,n,u=1...,m are the compatibility
conditions for existence of solutions of augmentdE system
A{x;u} that includesR{x;u} and constraint equations (11).

A “nonclassical symmetry” isot a symmetry of R{ x;u} unless the
Infinitesimals yielding an infinitesimal generat@a) yield a point
symmetry of R{ x;u}.

Otherwise, a mapping resulting from such an indsimnal
generator mapso solution of R{ x;u} into a different solution of
R{x;u}. It just maps the solution obtained by the nossieal
method into itself!

15



Strictly speaking, the nonclassical method is ndsyanmetry”
method but an extension of Lie’s symmetry methodagsical
method”) with the purpose of finding specific solutions biH3.

The situation for a scalar PDE with two independent variables

Now consider situation of a scalar PDE with two apdndent
variables.

Let x' = x, x> =t, &' = &(x,t,u), £ =1(X,t,u).

Then invariant surface condition equations (11)ob&e invariant
surface condition equation

16



E(x,t,u)u, + 7 (X, t,u)u, =n(xt,u). (12)
For a specific set ofé(x,t,u),r(x,t,u),n(x,t,u), the general

solution of invariant surface condition (12) canre@resented in
the form

2(x,t,u) =cons =c,, (similarity variable (13a)
H(x,t,u) =cons =c, = h(z). (13b)
After solving equation (13b) far, one obtaingnsatz
u=¢(x,t,h(z(x,t,u))) (14)
for solutions of the given scalar PDE.
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If a specific set of (&(x,t,u), 7(x,t,u),7(x,t,u)) iIs a set of
Infinitesimals for a point symmetry of the scalddE then the
dependence ofp onx, t, andh(z) is explicit in ansatz (14)(2) is
an arbitrary function of the similarity varialte

Here, substitution of the ansatz (14) into the scBIaE yields a
reduced ODE of order at mostwith independent variable and
dependent variable(z).

Each solution of this ODE yields an invariant swinf obtainable
by the classical method, of the scalar PDE.

If ¢, =1, =0, thenz(x,t,u) = z(x,t), and ansatz (14) reduces to
u=¢(x,t,h(z(x,1))). (15)
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It ¢, =1, =n, =0, ansatz (14) further reduces to
u = A(x,t) + B(x,t)h(z(x,t)). (16)

In the ansatz (16), function®\(x,t) and B(x,t) are explicitly
known for a specific set of functiofdg(x,t), 7(x,t),7(x,t,u)).

Suppose one obtains the sets of all infinitesimals
(é(x,t,u), 7(x,t,u),n(x,t,u)) of symmetries

X =&(xt,u) 2 +7(xtu)+n(xtu)2 of augmented system
A{x;u} consisting of the given scalar PDE, the constranaariant
surface condition equation (12), and the differérdasequences
of (12).
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Then it follows that the solutions = ®(x,t) of the scalar PDE,

arising from the nonclassical method, incluaesolutions of the
scalar PDE of the form = ¢(x,t,h(z(x,t,u))) whereh(z) satisfies
a reduced ODE.

Hence the nonclassical solutions of the scalar Pifiide all
solutions of the PDE obtained by ttieect methodof Clarkson &
Kruskal (1989) since the direct method aims to faidsolutions of
a scalar PDE that are of the ansatz (14) with @striction that
2(x,t,u) = z(x,t) [Nucci & Clarkson (1992)].
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From the nature of the constraint invariant surfacadition
equation (12), without loss of generality, in usihg nhonclassical
method, two simplifying cases need only be consdlemen
solving the determining equations fdg¢(x,t),7(x,t),7(x,t,u)),

namely,r=11r=0,¢ =1

This follows from the observations that if

(1) 7 #0, the constraint equation (12) can be divided hbyand
hence ser =1, so there are only two independent infinitesimals

(2) =0, 0, the constraint equation (12) can be dividedéby

and hence se =1, so here there is only one independent
Infinitesimal.
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Note that for a given set of infinitesimalé(x,t),7(x,t),7(x,t,u))
that satisfy the nonlinear determining equationg, cen use either

the Invariant form or direct substitution method fiod the
resulting solutions adhe scalar PDE.

Examples
(1) Heat eqguation

The first PDE considered through the nonclassiagthod was the
linear heat equation [B (1967), B & Cole (1969)]

u —-u, =0. (17)
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Casel. Theclassical method

The classical method determining equation (5) yielts the point
symmetriesX = &(x,t,u) 2 +7(x,t,u) < +7(x,t,u)2 of the linear
heat equation (17) is given by

2 3 2
Z-uuux ut + fuuux + 22-uuxtux + 2(Txu + gu)uxut + (fou _nuu)ux + 22-xuxt

+(Txx _Tt +2€x)ut +(£xx _ft _2,7xu)ux +(’7t _,7xx) = O
(18)

Equation (18) must hold for arbitrary valuesxgf,u,u, ,u.,u.,.

Thus (18) splits into nine equations.

This yields the well-known general solution of (18):
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(X t,u)=é(x,t)=a, +a,x+at+a,x,
r(x,t,u) =71(t) =20t +a,t’ +a., (19)

nix.tu) =[-La,x—-a,(:x* +it) +a,Ju+ g(xt),

wherea,,...,a, are arbitrary constants and, due to the lineaffity o

PDE (17),9(x,t) Is an arbitrary solution of the heat equation, I.e.,
g, —9, =0.

The resulting invariant solutions of the heat equmaappeared in B
(1967) and B & Cole (1969).
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Case 2. Thenonclassical method: 7 =1
If u=®d(x,t) satisfies the augmented PDE systeffx;u}

consisting of the linear heat equation (17), theresponding
constraint invariant surface condition

u, =n(xtu)—é(xt,uu,, (20)

and differential consequences of (20), it followsatthall t-
derivatives ofu and all x-derivatives of u In the classical
symmetry determining equation (18) can be as egpesas
polynomials inu,, with coefficients that are functions of t, and

u.

In particular, after differentiating (20) with regpdo x, and then
replacingu,, (=u,) by the right-hand side of (20), one obtains
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Uy = (7, =M + (7, =&, +EP)u, —&,u,”. (21)

After replacingu, by the right-hand side of (20), ang, by the
right-hand side of (21), the classical method der@ng equation
(18) for infinitesimals(&(x,t,u),7(x,t,u),n7(x,t,u)) becomes the
nonclassical method determining equation for indsimals

(E(x,t,u),7(x,t,u)):
Euly” ¥ (28 =Ny = 266U +(E o — & — 27, — 266, + 276U,

+(,7t _/7xx +2’7§rx) = O
(22)
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Equation (22) is a polynomial equationup, and hence splits into
four equations whose solution is given by

¢ =¢(xt),

(23)
n =C(x,t)u+ D(x,t),

where {£(x,t), C(x,1), D(x,t)} Is any solution of thenonlinear
system

Et - éxx + 255)( + 2CX — 01
C,-C,_+25C=0 (24)
D, -D,, +2£,D =0.
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This case was considered in more detail in B & (0#69). Note
that due to the form of (23), it follows that heaé# obtained
solutions of the linear heat equation (17) arénefform (16).

Case 3. Thenonclassical method: 7 =0, £ =1

Here it is easy to show that after using the caomail invariant
surface condition equationu, =7 and its differential

consequences, classical method determining equdfi@h for
Infinitesimals ((x,t,u),7(x,t,u),n(x,t,u)) becomes nonclassical
method determining equation for infinitesinglx,t,u):

N°Nu + 200 + 1 =17, =0. (25)

28



Note that
1
n= B o(x,t)u (26)

solves the determining equation (25Vif o(x,t) is any solution
of the Burgers equation

v, +w, —-v,  =0. (27)

29



Thus equation (26) together with the conditionajammant surface
condition equatiomu, =7, yields the Hopf-Cole transformation

u
v=-2-—">

u
that relates solutions of the Burgers equation @Y the linear

heat equation (17) through the nonclassical methidus case was
first considered in Fushchich et al. (1992).

Note that in this case, due to the form of an olet@iinfinitesimal
that satisfies the determining equation (25), alteg solution of
the linear heat equation (17) is of the form

u = g(x,t,h(t)). (28)

whereh(t) satisfies a reduced ODE.
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(2) Boussinesg equation

The nonclassical method essentially lay dormantviar decades.
A significant discussion of it appeared in the papaf Olver &

Rosenau [(1986), (1987)] in the context of findisglutions of
PDEs subject to differential constraints.

A revived Interest in the nonclassical method wgrsted by the
remarkable paper of Clarkson & Kruskal (1989), ihieh they
exhibited solutions of the Boussinesqg equation

u, +uu, +u’+u,_ =0, (29)

not obtainable by the classical method.
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In this paper, the direct method was introducefinid solutions of
the Boussinesq equation (29) that are of the fdrim. (

These were obtained by directly substituting theasn (15) into

the Boussinesq equation (29) to find all casesihgatb a reduced
ODE for someh(z(x,t)).

In a “tour de force”, Clarkson and Kruskal fountdsalch solutions
of (29). For example, their solutions of (29),@nby

u(x,t) =t’h(z) -t 2 (x+At*)*, z=xt+iAt®, A =const, (30)
with h(z) satisfying the reduced ODE

(W" +ww +5iw-501%2)' =0, (31)
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were not obtainable by the classical method, B&s.,invariant

solutions from the well-known point symmetries lo¢ Boussinesq
equation (29) with infinitesimals

E(x,t,U) = &(X) = ax +a,,
r(x,t,u) =r(t) =2a.t+a,, (32)
n(x,t,u) =n(u) = —2ayu,

wherea,,a,,q,, are arbitrary constants.
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As shown aboveall solutions arising from the direct method must
arise from the nonclassical method.

In their seminal paper, Levi & Winternitz (1989)osh how to use
the nonclassical method to obtain all Clarkson dtaiskal
solutions of the Boussinesq equation (29).

They consider the nonclassical method for the cas& and show
that the resulting infinitesimals are:

¢ =¢(x ) =a(t)x+ A1),
n(xt,u) = —2at)u-[2a(t)(a' () + 2a° ()X +2([at) BO]

+Ag® (1) BO)x+2BM)(B (1) + 2a (1) A1),
(33)
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wherea (t) and 5(t) are solutions of ODE system

a" +2aa' —-4a° =0,

34
B"+2ap —-4a? B =0. (34)

The general solution of ODE system (34) is eaditamed and for
any solution of ODE system (34), the general sofutof the
constraining invariant surface condition equatib?)(s:

u=K*®h(z) - (a®)x+ L))", z= K(t)X—jﬁ(S)K(S)dS, (35)

whereK (t) = ex —j'a(s)ds} .
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Substitution of (35) into Boussinesq equation {@8)ds

w +ww' +wW? + (Az+ B)W + 2Aw = 2( Az + B)?

A= az(lt<)4—(tc)7’(t) = const,

where

3= IBK(t‘g)(t_) ZAOM Ai B(s)K (s)ds = const.

(36)
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Note that the solutions obtained by the classicghiod result from
the two particular sets of solutions

a(t) = , B(t) = , C =const,D =const,

anda(t) =0, 5(t) = E =cons

of ODE system (34).
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