
Invertible Mappings of Linear PDEs to Linear PDEs with
Constant Coefficients

If a linear PDE has constant coefficients, then there is an arsenal
of techniques (including use of Fourier series, Fourier and
Laplace transforms) to find appropriate Green’s functions and
solve various posed boundary value problems.  This leads to two
obvious questions:

• Can one map a given linear PDE with variable coefficients
    to some linear PDE with constant coefficients by an

invertible point transformation?

• What is the most general point transformation that yields
such a mapping?



 The second question is connected with the problem of finding all
domains that yield the possibility of Fourier or Laplace transform
analysis for a given linear PDE.

A constant coefficient linear PDE is completely characterized by its
admitted point symmetries connected with its linearity and invariance
under the Abelian group of translations of its independent variables.

Consequently, one can establish necessary and sufficient conditions
for mapping a given variable coefficient linear PDE to some constant
coefficient linear PDE.

When such conditions hold for a given linear PDE, one can find an
explicit mapping.



Consider a given pth order linear PDE R{ x;u} with n
independent variables ),,( 1 nxxx K=  and dependent
variable u given by
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defined on domain .nD ℜ⊂   Aim is to determine
whether or not R{ x;u} can be mapped invertibly by some
point transformation µ  into some constant coefficient
linear PDE  S{ z;w} of the form
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with independent variables ),,( 1 nzzz K=  and dependent
variable w, and find such a mapping µ  when it exists.



In order to preserve linearity, such a mapping  µ  must be
of the form
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)(xG  is the multiplier of the mapping.  The mapping  µ  is
invertible if and only if
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A constant coefficient linear PDE S{ z;w} with n independent
variables z is invariant under the n-parameter Lie group   zwG  of
translations  of its independent variables.

Hence it is necessary that the given PDE R{ x;u} admit an n-
parameter Abelian Lie group  xuG  to have an invertible
mapping to a constant coefficient linear PDE.

Moreover xuG  must also be an n-parameter Abelian Lie group
when its action is projected onto its space of  n  independent
variables  x  since the mapping must preserve the commutation
relations of the Abelian Lie algebra   .zwL



A constant coefficient linear PDE S{ z;w} with n
independent variables admits:

.,,1,Z n
z

K=
∂
∂= αα

α

Consequently, in order for the mapping  µ  to exist, the
given linear PDE R{ x;u} must admit n infinitesimal
generators of the form
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that satisfy the commutation relations
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From the mapping equations
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More explicitly:
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Hence
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Moreover, µ  is invertible if and only if

0|)(|det ≠xijξ   in  D.    (3)



From the commutation relations, it follows that for   µ  to
exist, one must have:
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Theorem.  If a given linear of PDE  R{ x;u}  admits n
infinitesimal generators of the form (1) whose components

)}(),({ xfx iijξ satisfy equations (4) and condition (3), then there
exists a solution )}(),({ xGxiφ of equations (2) that defines an
invertible mapping of R{ x;u}  to some constant coefficient
linear PDE S{ z;w}.

Proof.  The proof is accomplished by showing that any
)}(),({ xGxiφ  solving (2), whose coefficients are defined by (3)

and (4), satisfies the integrability conditions given by
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Mapping algorithm summary

• Set up the determining equations for the infinitesimals of
the point symmetries admitted by R{ x;u}.  [Note that it is
unnecessary to solve explicitly the determining equations!]

• Use the determining equations to check if the coefficients
of the linear equation R{ x;u} are such that (4) has a
nontrivial solution for which 0|)(|det ≠xijξ   in some
domain  D.  If the system of equations (4) only has trivial
solutions for which ,0|)(|det ≡xijξ  then no invertible
mapping  µ  exists.

• Solve the first set of equations (2) to find φ(x).

• Find the multiplier G(x) by solving the second set of equations (2)



Example: Parabolic Equation
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Theorem 4.4.2-1.  A parabolic PDE in standard form can
be mapped invertibly by a point transformation to the
backward heat equation
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if and only if  ),( yxV  is of the form
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for some functions ).(),(),( ycybya   The point
transformation that yields the mapping is given by
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where ))(),(),(( yyy λρσ  is a solution of the nonlinear
system of ODEs
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Equations (7) can be solved analytically.


