Invertible Mappings of Nonlinear PDEs to Linear PDESs

Theorems on Invertible Mappings

Let R{x;u} denote &th-order given system o PDEs with n
independent variables= (x,...,x") and m dependent variables
u=(u,...,u™) given by

R’[u] = R?(x,u,0u,...,0“u)=0, o=1...,N.

Let Szw} denote &th-order target system dfi PDEs withn
independent variablez= (z',..., Z") and m dependent variables

w= (W,...,w") given by

S7[w] = S%(z,w,0w,...,0"w) =0, o=1,...,N.



Theorem 1[case of one dependent variahle-due to Backlund (1876)]A
mapping u defines an invertible mapping from (x,u,du,...,0 "u)-space to

(z,w,0w,...,0°w)-space for any fixed p=1ifandonlyif x isaone-to-one
contact transformation of the form

Z=¢@(X,u,0u),
W =¢/(X,u,0u),
ow =ady/(X,u,0u).

Theorem 2[case of two or more dependent variables-due to Muller and
Matschat (1962)]:A mapping x defines an invertible mapping from

(x,u,0u,...,0°u) — spaceto (z,w,0w,...,0"w)— space

for any fixed p ifandonlyif x4 isaone-to-one point transformationof the
form

Z=@(X,U),
w =/ (X,U).



Theorem 3. Suppose thetarget system of PDEs S{zw} iscompletely
characterizedin terms of admitted point (contact) symmetries with
Infinitessimal generators

Z=(' (z,w,aw)i + (z,w,aw)i..
0z ow’
Then the necessary and sufficient conditionso that the given system
R{x;u} can be mapped invertibly into a PDE system in the target
system S{zw} by some point (contact) transformation
Z=@(x,u,0u), w=¢/(x,u,0u), arethat R{ x,u} must admit point
(contact) symmetries with infinitesimal generators

X=¢& (x,u,au)i + (x,u,au)i.
ox ou’
such that
XQ=22, s’

XY =20, )



Invertible mappings of nonlinear PDESs
to linear PDEs through admitted symmetries

Motivation : Here target systen®{ z;w} is some linear system (not
known in advance), defined in terms of some (unkmawmear
operator LE], and given by

L[Zw =9(2),

for some inhomogeneous tegfr); S{zw} is completely
characterized by admittedfinite set of point symmetries

z=w’
ow

wherew = 1(2) is any function satisfying [f = 0.

=> the following four theorems [Kumei & B (19848,& Kumei
(1990)]:



Theorem 4(Necessary conditions for the existence of an invertib
mapping for a nonlinear system of PDEH)there exists an invertible
mapping u of a given nonlinear system of PDEs R{x;u}, with at least

m= 2 dependent variables, to some linear system of PDEs § z w},
then

(1) mapping is a point transformation of the form

Z'=¢'(x,u), j=1...,n,
w =g’ (x,u), y=1....m
(2) R{x,u} admitsan infinite set of point symmetries

0
ou”

X =& (x,u)%m”(x,u)

with infinitesimal s of the form

qzi (X,U) - iaL(X,U)Fy(X,U), I7V (X,U) = iﬁ; (X,U)Fy(X,U), 5

y=1 y=1



where a‘y(x,u), B, (x,u), are specific functions of x and u,

and the componentsof F =(F*,...,F™) arearbitrary
solutions of some linear system of PDEs

L[ X]F =0,

In terms of some specific linear differential linear operator
L[ X] and specific independent variables

X = (X (xu),..., X" (x,u)).



Theorem 5(Sufficient conditions for the existence of an irtiee
mapping for a nonlinear system of PDES)uppose a given nonlinear
system of PDEs R{x,u}, with m=> 2 dependent variables, admits an

Infinite set of point symmetries satisfying the criteria of Theorem4. |f
the linear systemof m first order PDEs for a scalar @ given by

0D

=0, o=1....m,
ou” L

am(x,u>g—2_’+ﬁz(x,u)

has X; (x,u),..., X, (X,u) as n functionally independent solutions, and
the linear inhomogeneous system of nt first order PDES

y y
oWV +ﬁg(x’u)aw

= 5}/,
) ou” °

aia(X1 U)

where 9. isthe Kronecker symbol, y, ¢ = 1,...,m, has some particular
solution

W= (@ (xu),...,rm(x,U)),



then the mapping u given by

' =¢'(x,u) = X (x,u), j=1...,n,
w =y’ (x,u), y=1...,m,

Isinvertible and transforms R{ x;u} to thelinear system of PDEs ${ zw}
given by

L[zZlw=g(2),

for some inhomogeneous term g(2).



Theorem 6(Necessary conditions for the existence of an invertibl
mapping for a nonlinear scalar PDHJ:there exists an invertible

mapping u« of agiven nonlinear scalar PDE R{x;u} tosomelinear
scalar PDE S{zw}, then

(1) the mapping isa contact transformation of the form

z! = ¢ (x,u,0u),
w={/(X,u,0u),
ow

gzaw"(x,u,au), j=1...,m;

(2) R{x;u} admits an infinite set of contact symmetries

X=£ (x,u,au)i +/7(x,u,6u)i +n® (x,u,au)i
(004 ou ou'



with infinitesimals &' (x,u,du),/7(x,u,du), and first extended infinitesimals
n® (x,u,0u) of the form

&' (x,u,0u) = a' (x,u,0u)F (x,u,0u) +a (x,u,du)H ' (x,u,0u),
n(%,u,0u) = B(x,u,0u)F(x,u,0u) + B (x,u,0u)H (x,u,0u),
7% (x,u,0u) = A'(x,u,0u)F (x,u,0u) + A\ (x,u,0u)H ’ (x,u,0u),

whered, o', B, pi, 2\, A, i, j = 1,...n, are specific functions of x, u, and the

componentsof du, and F(x,u,0u) is an arbitrary solution of

some linear scalar PDE L[X]F = 0, in terms of some specific linear
differential operator L[X] and specific independent variables

X =(X*(x,u,0u),..., X"(x,u,0u)); and H'(x,u,du) satisfies

. OF .
HJ:W, le,...,n.
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Theorem 7 (Sufficient conditions for the existence of an irtille mapping
for a nonlinear scalar PDEBuppose a given nonlinear scalar PDE R{ x;u},

admits an infinite set of contact symmetries satisfying the criteria of Theorem
6. Suppose the following conditions hold.
(1) Thelinear homogeneous systemof n+ 1 first order PDEs for a scalar

®(x,u,0u) given by

G(D 0P G(D

“T+ =0,
ax 'Bau ou'
ajaq) Jacp Ajaq) 0, j=1...,n,
X ou ou'

has X*(x,u,0u),..., X"(x,u,0u) as n functionally independent solutions.
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(2) Thelinear inhomogeneous systemof n+ 1 first order PDEs
aLIJ ow aw

ax 'Gau ou' 1
d % i % 2o =10,
Fax TTou o

has some particular solution W =¢(x,u,0u).

(3) Thelinear inhomogeneous systemof n(n + 1) first order PDES
6LIJ‘ GLIJJ aLIJ‘

'8 6u -1 *)
GW‘ OW’ awi o

+ — =4, j,k=1...,n,
“ ax! P au <out X L

where ¢ is the Kronecker symbol, has some particular solution

(WH,... WM =0y = (*(x,u,0u),....¢¢" (X,u,0u)).
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(4) There exists a particular solution d¢ of (*) such that
(z,w,0w) = (X (x,u,0u),i/(x,u,0u),0(x,u,0u)) defines a contact

transfor mation.

Then the mapping « given by

7' =@ (x,u,0u) = X' (x,u,0u),
W ={/(X,u,0u),
w! =g’ (x,u,0u), j=1...,n,
Isinvertible and transforms R{x;u} to thelinear scalar PDE S zw}
given by
L[Zw = 9(2),

for some inhomogeneous term g(2).
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Invertible mappings of nonlinear PDESs
to linear PDEs through admitted conservation law mttipliers

Definition : Thesetof factors{A [U ]} isaset of conservationlawmultipliers

for a system of PDE&R{x;u} if and only if for arbitrary functions
U(X) = (U'(x),..., UMX)), one has an identity (divergence expression)

AJUIR'[U]=D,®'[U]
holdingfor somefunctions®'[U], i =1,...,n; D, aretotalderivativeoperators.

Motivation : Here target systen®{ z,w} is some linear systenm¢t known in
advancg defined in terms of some (unknown) linear oparkfal. For any

linear operator 4] and its adjoint operator LZ], the formal relation
VL[Z]W -WL*[ ZV

IS a divergence expression fbitraryfunctionsV(z), W(2).
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Consider &th order linear PDE systera[ zlw =0, denoted by§ z,w}.
In particular, the linear PDEs are given by
Lo[zw" =0, (¥)
In terms of linear operators
oro1 Lo i 0 iy, 0"
La[z] _ba (Z)+ba (Z)aZi + +b (Z)aZil---aZik
The correspondingdjoint linear system L*[ z]v = 0, is given by

La[Zv, =0, (1)

., o=1...,N.

a

wherefor anyfunctionsV (z) = (V,(2),...,V\ (2)),

T2, =B (2, = s (0 (V) + -

Ok Gin- i
e T @V, a=1m

15



Then for arbitrary functionsV(z) and W(z) = (W'(2),...,.W™(2)), which ont

can view asconservation law multipliers {V,(2} and {W'(2} for the
augmented linear systenconsisting of the linear system (*) and thaoin
system (1), one has a conservation law identity

DW'/DZ =V _L[ZW? -WL%[ZV,,

a

holding for some specific functionsW(2)} that have a bilinear depende
on the multipliers and their derivatives.

16



Remark: Suppose a given nonlinear system of PIB¥g;u} can be invertibly
mapped to some linear system of PDEs; W} by some point transformation.

Then for some nontrivial factof€)[U]}, one must have
QUIRU]=L,[ZW", o=1...,N,

whereU (x) = (U*(x),...,U™(x)) arearbitraryfunctionsandfunctions
W(2) =(W'(2),...,.W™(2)), areobtainedthrough helinearizaton mapping

z=@x,U (X)),
W(2) =¢(x,U (X))

17



Consequently, the CL identity
DW' /DZ =V Lo [ZW? -WILE[ZV,

a

becomes
DA /DX =J(V,Q°[UIR'[U] -WL%[ZV,),

whereDA' /DX =|Dz/Dx(DW'/Dz') in terms of some specific functions
A" and the Jacobian factor
=de D—Z .
Dx!

This leads to the following two theorems.
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Theorem 8 (Necessary conditions for the existence of an titslermapping)
If there exists an invertible point transformation that maps a given kth order
nonlinear system of PDEs R{x;u} to some linear system of PDEs § z;w},

then the nonlinear system R{x;u} must admit an infinite set of conservation
law multipliers of the form

AU] = v, Q7 U,

where Q’[U],v=22,...,N,0=12,...,N, arespecific functionsof x and U
and derivativesof U toorder k-1, and thecomponents of
V=(V,...,V.,) aredependent variables of some linear system of PDEs

L[X]v=0, givenhy
L2[X]v, =0, a=12...,m,
in terms of specific independent variables

X =(X*(x,U),...,X"(x,U)),

and
J =|DX/Dx].
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Theorem 9 (Sufficient conditions for the existence of anarble mapping).
Suppose a given nonlinear system of PDEs R{ x;u} admitsan infinite set of

conservation law multipliers satisfying the criteria of Theorem 8. Let L'X] be

the adjoint of the linear operator L[X]. Consider the augmented system of

PDEs consisting of the given nonlinear system of PDEs R{x;u} and the linear
system L[ X]v=0. Thenthereexist multipliers

{A, = V,Q7[U], - W (x,U)}
so that a conservation law identity
AR [UT=IW (x,U)LZ[ X (x,U)V, =DO' /DX
holds for some specific functions ©'(x), where the Jacobian

J =| DX /Dx|=detDX'/Dx?).

20



Then theidentity A, R'[U] - JW“ (x,U)LZ[X(x,U)]V, =DO' /DX becomes
V.Q[UIR[U]-W? (x,U)LZ[ X (x,U)IV? =DI'' /DX,

for some functions T''. Consequently, the point transformation given by
z= X(x,u), w=W(x,u)

maps the nonlinear system of PDEs R{x;u} invertibly into the linear system
given by

L5 [Zw” =0,

provided that this point transformation is an invertible transformation.
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Proof. SinceL[X] is a linear operator, it follows that the conseomtlaw
identity

W7 (x,U)LZ[ X (x, UV, =V, LH[ X (x, U)W (x,U) + D8/ DX’
holds for some specific functio®d[U,V,W]. Consequently, the identity

V. Q[UIR[U]-W? (x,U)LZ[ X (x,U)]V, =Dr'/DX",
becomes
V_(QC[UIR[U] - LS X (x, U)W (x,U)) =D(I' +8')/DX'. (1)

Now apply theeuleroperatorsvith respect tov,, i.e.,

o D 0
= — : +---,0=1...,M,
S Tov, DX o 7 -

g ox'
to each side of equation (1). Each such Euleradpeannihilates the r.h.s of

(2).
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Consequently, one obtains the identity
Q/UIR'[U] = La[ X (xU)W* (xU)

holding for arbitrary functiondJ. Now supposdJ = u solves the give
nonlinear system oR{x;u}. Then it follows thatw = W(x,u) solves the line
system

L5 [Z]w* = 0. (2)
=> point transformatiorz = X(x,u), w = W(x,u).

Next check that this point transformation isinvertible transformation. If yes,
then it invertibly maps the nonlinear system of BDE{x;u} into the linea
system (2). QED

Remark: Theorems 8 and 9 are easily modified to include pimags o
nonlinear scalar PDEs to linear PDEs throaghtact transformations
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Examples of Linearizations of Nonlinear PDEs Through
Admitted Symmetries and Through Admitted Conservation
Law Multipliers

L INEARIZATION OF BURGERS EQUATION
ConsiderR{x;u} withindependenvariables(x",x*) = (x,t) anddependent
variables(u*,u®), givenby thesystem

ou?

R'ul=—-2u'=0,
0X
2 1
R°[u] = aait - 2%{ +(u')* =0.

Then u' =u satisfiesBurgersequation

u, —uu, —u, =0.

24



Linearization Through Admitted Point Symmetries

Burgers’ equation admits at most a finite numbetaftact symmetriesHence
there exists no point or contact transformation tha linearizes Burgers
equation.

But the nonlinear systerR{x;u} admits an infinite set of point symmetr
represented by the infinitesimal generator [Krahithik & Vinogradov (1984)]

X = e“2’4{[2h(x,t) + g(x,t)ul]% + 49%0%}

where (g(x,t),h(x,t)) isanarbitrarysolutionof thelinearsystenof PDEs

h=9,, h =g,.

=> one can linearizR{x;u} by an invertible mapping.

25



Then
F'=h(xt), F? = g(xt),a’ =0,

,3 ~ 214 ,3 _uleu 14 ,32 -0 ,32 :4eu2/4

2 1 1 172 .

= X'=x, X% =t
The corresponding linear inhomogeneous system hapasi@ilar solution
Y = (wl’lﬂZ) — (%ule—u /4’_e—u /4).
= Invertible mapping
Z'=x, 2% =t,w =iule™ 4 w2 = e /4

from R{x;u} to linear systemS z;w}

2
W= oW _ow”
0X ox ot

26



Note thaiw" satisfies the heat equation

o2t W _

0.
ox* ot

= (non-invertible) Hopf-Cole transformation

20w

Wt oax

27



Linearization Through Admitted Conservation Law Multipliers

The nonlinear systenR{x;u} admits an infinite set of conservation law
multipliers of the formA [U] = A, (x,t,U) given by

AJUT=v,GUY MY +v,eV ) AU =vel
where (v, (X,1), v, (X,t)) isanysolutionof thelinearsystem

ov, V. =0 ov, OV, _

"y =0, 0.
ox - X ot

Hence, the necessary conditions for the existehaa mvertible mapping of
the nonlinear syste{x;u} to a linear system are satisfied, where the targe
linear system has the same independent variablbe @gven system.

28



In the conservation law arising from the infiniet ef multipliers
AJUT=v,(GUEY ) +v,eV 4 AU =veV *, replace(v,v,) by arbitran
functions(V,,V,).

=> conservation law identity for the augmented systemmsisting of the give

nonlinear systenR{x;u} and the linear system

%—V220,6V2+0V1:OZ *)
0X ox Ot

[Vl(%U 1e—U2/4) +Vze—U2/4] Rl[U]+Vle—U2/4R2[U]
-2V *[DV,/Dx-V,] - 4e*[DV, / Dx + DV, / Dt]

o i -anol S o]

Consequently, the sufficiency conditions of Theor@nyield aninvertible
mapping of the nonlinear systd®{ x;u} to a linear system which is the adjoint
of the linear system (*). In particular, this yislthe same mapping obtained
from the admitted infinite set of point symmetries.
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L INEARIZATION OF A PIPELINE FLOW EQUATION

Let R{x;u} be the pipeline flow equation
Ru]l=uu,+u" =0.
Linearization Through Admitted Contact Symmetries

R{x;u} admits an infinite set of contact symmetries represinby th
Infinitesimal generator

_ OoF 0 oF |0 ,OF 0
X=————+F-u, +
ou, 0x ou, |0u adt du,

where F (x,u,0u) = F (t,u, ) isanysolutionof thelinearPDE

2
ux'“’a E—aF =0.
ou ot

X

30



= one can linearizR{x;u} by a contact transformation. Here

X'=u,X?=t,0'=0,a,=-La’=a,=a-=0,=1,8=-u,5,=0/A =
A== P2=0R2=18=2e""* g =ue"'* B2=0, B2 =4

In Theorem 7, the corresponding linear homogensgsi®m has
Xt=u, X?* =t

as functionally independent solutions; the corresjimy linear homogeneous
system has a particular solution

Y =u-xu,
and the corresponding linear inhomogeneous systanas a particular solution
W) = (u,~x).
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=> invertible mapping i given by the contact transformation

z'=t, z°=u, w=u-xu, W=u, W =-X

X

transforms the nonlinear PDE{ x,u} to the linear PDE

o 0w _ow _
“9u.® ot

X

0.
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Linearization Through Admitted Conservation Law Multipliers

One can show that the scalar nonlinear PREx;u} admits an infinite set «
conservation law multipliers of the forlrqU | = A(x,t,U,U ,U,) given by

A[UT =v(X*, X?) =v(U 1),

where v(X*, X?) isanysolutionof thelinearPDE

2 I\ p
av2 +0 (X 2 V) -0
oX ox*t
Hence the necessary conditions for the existenam afvertible contact
transformation that linearizeR{x;u} are satisfied with a target linear system
having as independent variables

Xt=u, X* =t
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In the conservation law arising from the infiniteet sof multipliers
A[U] =v(X*, X?) =v(U_,t), replacev by an arbitrary functiorV.
= conservation law identity for the augmented systeomsisting ofR{x;u}
and linear PDE
ov +02((X1)'C’v) ~0-
oX*  ox*

(*)

vV 9°((XHPV)
+
0X ? axX ¥

= o0, ~U)UY U (@ pxU, U

VR[U]—J(XUX—U){

D
+E[uxx(u - xU V],

where Jacobian
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In verifying the conservation law identity (4.2@pte that

V, =V U, V.=V, U, +V,,.

= sufficiency conditions of modified Theorem 9 holglifor the existence of .
iInvertible mapping by a contact transformation Bf x;u} to a linear PDI
which is the adjoint of linear PDE (*).

= invertible contact transformation given by

1 _ 2 _ — —_ —_
X" =U, X" =L, W=XU, —U, Wy =X W, =—U,

maps the nonlinear pipeline equation giviefix;u} into the linear PDE

0°w _ Ow _

X1)P =
( )ax12 X2

which is the adjoint of the linear PDE (*).
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L INEARIZATION OF A NONLINEAR TELEGRAPH EQUATION

Let R{x;u} be the nonlinear telegraph (NLT) system, given by

ou® au' _
ot  0x

1

Rz[u]zaait+u1(u - - (uh)

R'[u] =

26u
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Linearization Through Admitted Point Symmetries

The NLT system admits an infinite set of point symmstmepresented by t
infinitesimal generator

0 _ 0 _ 0 9
X =FY(X,T) - +e'F (X, T) . +e'WF3(X,T) g +F{(X,T) -5
(X, T re F (X Ty (X.T) g +FHXT)
where
X1:X=X—U2, X2=T:t_|0gul,
and (FY(X,T),F?(X,T)) isanarbitrarysolutionof thelinearsystenof PDEs

O OF

hali =0,
T oX

2 1
ai—e-rai:o_
oX oT

=> one can linearizBR{x;u} by an invertible mapping. 37



Thena; =B’ =lLa,=a; =B =6;=0a;=¢", 5 =¢€"u.

The corresponding linear inhomogeneous system bkaa particular solution

W= y)=(x¢€)
Hence the invertible mapping given by
Z'=x-v, zZ°=t-logu, W =x, W =¢,

transforms the NLT system to the linear P3Ezw} given by

oW oW _
—2—6 —1—0,
0z 0z

W _ MW o,

~— —e
oz 0z°
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Linearization Through Admitted Conservation Law Multipliers

NLT system admits an infinite set of conservation lawltipliers of the form

AUT=A (x,t,U",U?): After some integrability analysis, one obtains
AU]= 152, AJUT= 14 (*)

in termsof f(x,t,U*,U?) satisfying

fo+f.=0 f +U1fU1 =0, (UY? fi: —2U1fU1 -1,

X

=0. (%)

2U2

The solution of the first two PDEs of (**) yields= f(X,T) where
X =x-U?T=t-logu",
and then the third PDE of (**) combined with (*)ej the infinite set ¢
multipliers
A[UT=v(X,T) AUI=v(X,T)UHT,
where (v, (X,T), v, (X,T)) isanysolutionof thelinearsystem
ov, 0v, N

oxX oT 39



Hence, the necessary conditions for the existehaa mvertible mapping of the
nonlinear NLT systenR{x;u} to a linear system are satisfied.

In the conservation law arising from this finitd & multipliers, replace w,V,)
by arbitrary functions\{1,V,).
= conservation law identity for the augmented systeomsisting of the give
nonlinear NLT system and the linear system
v, 0V, v, =0, ov, 0v, ~0-
oxX 0T oX 0T

VlRl[U] +V, (U HTRIU]-JU 1[val -D;V, +V2] + ‘JX[DXVZ B DTV1]

2 1 1 2
=D, |-V, x99 14+ Y +V, x—x(ul)‘laU —yrY
ot ot ot ot

2 1 1 2
+D{—V1(x—xaU +a<;Jt J+V2(X(U1)‘1aU —yt+yrY H

16)4 16)4 16)4

2 1 2 1
with J=U"Y7| 1- U u?t _ou”)_ou”au .
0X ot ot 0X
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= Z'=X =x-u%2z"=T =t-logu*, w" =—x, w* = u',
maps the NLT system into the linear system

ow ow
— -w" =0,
oX oT
oW oW _
oX oT

0, (1)

Note that the point transformati
W =wt, W ='W,
maps the linear system (1) into the linear system
OWZ—eTﬁ—O aWZ—eT@—O

oT oX oX oT

which is the particular linear system obtained frbnearization of the NLT
system through its admitted infinite set of poiyrnsnetries.

41



o O1

References

.Kumeli, S. and Bluman, G. W.: When nonlinear difféi@ equations are equivals

to linear differential equation§ AM J. Appl. Math. 42 (1982), 1157-1173.

.Bluman, G. W. and Kumei, S.: Symmetry based algor# to relate partial

differential equations: I. Local symmetriésjrop. J. Appl. Math. 1 (1990), 189-216.

.Bluman, G. W. and Kumei, S.: Symmetry based algor# to relate partial

differential equations: Il. Linearization by nonddcsymmetries,Europ. J. Appl.
Math. 1 (1990), 217-223.

.Bluman, G. W. and Doran-Wu, P.: The use of factordiscover potential systems

or linearizationsActa Appl. Math. 41 (1995), 21-43.

.Backlund, A. V.: Uber Flachentransformation&tgth. Ann. 9 (1876), 297-320.
.Muller, E. A.:and Matschat, K.: Uber das Auffinden Ahnlichkeitslosunge

partieller Differentialgleichungssysteme unter Bizoiilg von
Transformationsgruppen, mit Anwendungen auf PrablelerStromungsphysik,
Miszellaneen der Angewandten Mechanik, Berlin, 1962, pp. 190-222.

.Krasil’'shchik, I. S. and Vinogradov, A. MNonlocal symmetries and the theon

coverings: an addendum to A. Minogradov’s ‘Local symmetries and conserva
laws’, Acta Appl. Math. 2 (1984), 79-96.

.Anco, S., Bluman, G. W. and Wolf, T.: Invertible ppangs of nonlinear PDEs to

linear PDEs through admitted ClAgta Appl. Math. 101 (2008), 21-38.

42



