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Invertible Mappings of Nonlinear PDEs to Linear PDEs

Theorems on Invertible Mappings

Let };{ uxR  denote a kth-order given system of  N  PDEs with  n

independent variables ),,( 1 nxxx K=  and  m  dependent variables

),,( 1 muuu K=  given by

.,,1,0),,,,(][ NuuuxRuR k
KK ==∂∂= σσσ

Let  S{ z;w}  denote a kth-order target system of  N  PDEs with  n
independent variables  z = (z1,…, zn)  and  m  dependent variables
w = (w1,…, wm)  given by

.,,1,0),,,,(][ NwwwzSwS k
KK ==∂∂= σσσ



2

Theorem 1 [case of one dependent variable  u—due to Bäcklund (1876)]:  A
mapping  µ  defines an invertible mapping from ),,,,( uuux p∂∂ K -space to

),,,,( wwwz p∂∂ K -space for any fixed  1≥p  if and only if  µ  is a one-to-one
contact transformation of the form
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Theorem 2 [case of  two or more dependent variables  u—due to Müller and
Matschat (1962)]:  A mapping  µ  defines an invertible mapping from

spacewwwz  to spaceuuux pp −∂∂−∂∂ ),,,,(),,,,( KK

for any fixed  p  if and only if  µ  is a one-to-one point transformation of the
form
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Theorem 3:  Suppose the target system of PDEs  S{ z;w}    is completely
characterized in terms of admitted point (contact) symmetries with
infinitesimal generators

.),,(),,(Z j
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Then the necessary and sufficient conditions so that the given system
R{ x;u}  can be mapped invertibly into a PDE system in the target
system  S{ z;w}   by some point (contact) transformation

  point admit must ux that are  uuxwuuxz },{),,,(),,,( R∂=∂= ψφ
(contact) symmetries with infinitesimal generators
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Invertible mappings of nonlinear PDEs
to linear PDEs through admitted symmetries

Motivation : Here target system  };{ wzS  is some linear system (not
known in advance), defined in terms of some (unknown) linear
operator L[z], and given by

L[z]w = g(z),

for some inhomogeneous term g(z); S{ z;w}  is completely
characterized by admitted infinite set of point symmetries

,Z
w∂
∂= ω

where ω = f(z) is any function satisfying L[z]f = 0.

=>  the following four theorems [Kumei & B (1984), B & Kumei
(1990)]:
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Theorem 4 (Necessary conditions for the existence of an invertible
mapping for a nonlinear system of PDEs):  If there exists an invertible
mapping  µ  of a given nonlinear system of PDEs  },;{ uxR  with at least
m = 2  dependent variables, to some linear system of PDEs  },;{ wzS
then

(1) mapping is a point transformation of the form

;,,1),,(
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(2) R{ x,u}   admits an infinite set of point symmetries
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         with infinitesimals of the form
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where ),,(),,( uxuxi ν
γγ βα  are specific functions of  x  and  u,

and the components of ),,( 1 mFFF K=  are arbitrary
solutions of some linear system of PDEs

L[X]F = 0,

in terms of some specific linear differential linear operator
L[X] and specific independent variables

)).,(,),,(( 1 uxXuxXX n
K=
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Theorem 5 (Sufficient conditions for the existence of an invertible
mapping for a nonlinear system of PDEs):  Suppose a given nonlinear
system of PDEs  },,{ uxR  with 2≥m  dependent variables, admits an
infinite set of point symmetries satisfying the criteria of Theorem 4.  If
the linear system of  m  first order PDEs for a scalar  Φ given by

,,,1,0),(),( m
u

ux
x

ux
i

i K==
∂

Φ∂+
∂
Φ∂ σβα ν

ν
σσ

has  X1 (x,u),…, Xn (x,u)  as  n  functionally independent solutions, and
the linear inhomogeneous system of  m2  first order PDEs

,),(),( γ
σν

γ
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σ δβα =
∂
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where γ
σδ  is the Kronecker symbol, γ, σ = 1,…,m, has some particular

solution
)),,(,),,(( 1 uxux mψψ K=Ψ
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then the mapping µ given by

,,,1),,(

,,,1),,(),(
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is invertible and transforms R{ x;u} to the linear system of PDEs  S{ z;w}
given by

),(][L zgwz =

for some inhomogeneous term  g(z).
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Theorem 6 (Necessary conditions for the existence of an invertible
mapping for a nonlinear scalar PDE):  If there exists an invertible
mapping  µ  of a given nonlinear scalar PDE  R{ x;u}   to some linear
scalar PDE  S{ z;w},    then

(1) the mapping is a contact transformation of the form
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(2) R{ x;u}   admits an infinite set of contact symmetries
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with infinitesimals  ),,,(),,,( uuxuuxi ∂∂ ηξ  and first extended infinitesimals

),,()1( uuxi ∂η   of the form

),,,(),,(),,(),,(),,(

),,,(),,(),,(),,(),,(

),,,(),,(),,(),,(),,(
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where αi, αi
j, β, βj, λ

i, λi
j , i, j = 1,…,n, are specific functions of  x, u, and the

,uofcomponents ∂   arbitraryanisuuxFand ),,( ∂  ofsolution
some linear scalar PDE   L[X]F = 0,  in terms of some specific linear
differential operator  L[X]  and specific independent variables

));,,(,),,,(( 1 uuxXuuxXX n ∂∂= K  satisfiesuuxHand j ),,( ∂
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Theorem 7 (Sufficient conditions for the existence of an invertible mapping
for a nonlinear scalar PDE):  Suppose a given nonlinear scalar PDE  },;{ uxR
admits an infinite set of contact symmetries satisfying the criteria of Theorem
6.  Suppose the following conditions hold.

(1) The linear homogeneous system of  n + 1  first order PDEs for a scalar

bygivenuux ),,( ∂Φ
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(2) The linear inhomogeneous system of  n + 1  first order PDEs
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(3) The linear inhomogeneous system of  n(n + 1)  first order PDEs
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thatsuchofsolutionparticularaexistsThere (*))4( ψ∂
contactadefinesuuxuuxuuxXwwz )),,(),,,(),,,((),,( ∂∂∂∂=∂ ψψ

transformation.

Then the mapping  µ  given by

,,,1),,,(
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is invertible and transforms  R{ x;u}  to the linear scalar PDE  S{ z;w}
given by

L[z]w  =  g(z),

for some inhomogeneous term g(z).
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Invertible mappings of nonlinear PDEs
to linear PDEs through admitted conservation law multipliers

smultiplier law onconservati of setU  a is  ]}[{  factors ofset  The  : νΛDefinition
for a system of PDEs  R{ x;u} if and only if for arbitrary  functions
U(x) = (U1(x),…, Um(x)), one has an identity (divergence expression)

][D][][ UURU i
iΦ≡Λ ν

ν

operators. derivative  totalare D;,,1],[ functions somefor  holding i
i niU K=Φ

Motivation : Here target system  S{ z;w}  is some linear system (not known in
advance), defined in terms of some (unknown) linear operator L[z].  For any
linear operator L[z] and its adjoint operator L*[z], the formal relation

VL[z]W – WL*[ z]V

 is a divergence expression for arbitrary functions V(z), W(z).
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Consider a kth order linear PDE system  ,0][L =wz  denoted by }.;{ wzS
In particular, the linear PDEs  are given by

,0][L =ασ
α wz      (*)

in terms of linear operators
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The corresponding adjoint linear system, L*[ z]v = 0, is given by

,0][L =∗
σ

σ
α vz        (†)
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∂
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Then for arbitrary functions   )(zV  and  )),(,),(()( 1 zWzWzW m
K=  which one

can view as conservation law multipliers {Vσ(z)} and {Wα(z)}  for the
augmented linear system consisting of the linear system (*) and the adjoint
system (†), one has a conservation law identity

σ
σ
α

αασ
ασ VzWWzVz ii ][L][LD/D ∗−=Ψ ,

holding for some specific functions  {Ψi(z)}  that have a bilinear dependence
on the multipliers and their derivatives.
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Remark: Suppose a given nonlinear system of PDEs };{ uxR  can be invertibly
mapped to some linear system of PDEs  };{ wzS  by some point transformation.

Then for some nontrivial factors ]},[{ UQσ
ν  one must have

,,,1,][L][][ NWzURUQ K== σασ
α

νσ
ν

functions and functionsarbitrary  are))(,),(()(where 1   xUxUxU  m
K=

mappingion linearizat he through tobtained are  )),(,),(()( 1 zWzWzW m
K=

)).(,()(

)),(,(

xUxzW

xUxz

ψ
φ

=
=
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Consequently, the CL identity

σ
σ
α

αασ
ασ VzWWzVz ii ][L][LD/D ∗−=Ψ

becomes

),][L][][(D/D σ
σ
α

ανσ
νσλ VzWURUQVJxii ∗−=

where )D/(DD/DD/D iiii zxzx Ψ=λ  in terms of some specific functions

λi   and the Jacobian factor

                                            .
D
D

det
D
D









== j
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J

This leads to the following two theorems.
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Theorem 8 (Necessary conditions for the existence of an invertible mapping).
If there exists an invertible point transformation that maps a given kth order
nonlinear system of PDEs   };{ uxR  to some linear system of PDEs   },;{ wzS
then the nonlinear system  R{ x;u}  must admit an infinite set of conservation
law multipliers of the form

],[][ UQJvU σ
νσν =Λ

U  and  x of functions  specificare  NNUQ  where ,,,2,1,,,2,1],[ KK == σνσ
ν

of components the and  k  order to  U  of sderivative and ,1−
PDEs of  systemlinear  someof variables dependent are  vvv m  ),,( 1 K=

by given  vX ,0][L
~ =

,,,2,1,0][L
~

mvX K== ασ
σ
α

in terms of specific independent variables

)),,(,),,(( 1 UxXUxXX n
K=

and
.|D/D| xXJ =
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Theorem 9  (Sufficient conditions for the existence of an invertible mapping).
Suppose a given nonlinear system of PDEs   };{ uxR  admits an infinite set of

conservation law multipliers satisfying the criteria of Theorem 8. Let  ][L
~

X∗   be
the adjoint of the linear operator  ].[L

~
X   Consider the augmented system of

PDEs consisting of the given nonlinear system of PDEs  R{ x;u} and the linear
smultiplier exist there Then  vXsystem .0][L

~
  =

)},(],[{ UxJWUQJV ασ
νσν −=Λ

so that a conservation law identity

ii xVUxXUxJWUR D/D)],([L
~

),(][ Θ=−Λ σ
σ
α

αν
ν

Jacobian the    wherex  functions  specific somefor holds i ),(Θ

).D/Ddet(|D/D| ji xXxXJ ==
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Then the identity ii xVUxXUxJWUR D/D)],([L
~

),(][ Θ=−Λ σ
σ
α

αν
ν  becomes

,D/D)],([L
~

),(][][ ii XVUxXUxWURUQV Γ=− σσ
α

ανσ
νσ

for some functions  Γi. Consequently, the point transformation given by

),(),,( uxWwuxXz ==

maps the nonlinear system of PDEs  R{ x;u}  invertibly into the linear system
given by

,0][L
~ =∗ ασ

α wz

provided that this point transformation is an invertible transformation.
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Proof.  Since ][L
~

X  is a linear operator, it follows that the conservation law
identity

     ii XUxWUxXVVUxXUxW D/D),()],([L
~

)],([L
~

),( θασ
ασσ

σ
α

α += ∗

holds for some specific functions ].,,[ WVUiθ   Consequently, the identity

                  ,D/D)],([L
~

),(][][ ii XVUxXUxWURUQV Γ=− σ
σ
α

ανσ
νσ

becomes

       .D/)D()),()],([L
~

][][( iii XUxWUxXURUQV θασ
α

νσ
νσ +Γ=− ∗     (1)

i.e.,  ,  respect to with operatorsEuler  apply the Now σV

σ
σ V

EV ∂
∂=    ,,...,1,

)(D
D

m
X iX

Vi =+
∂

∂−
∂
∂ σ

σ
L

 to each side of equation (1). Each such Euler operator annihilates the r.h.s of
(1).
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Consequently, one obtains the identity

),()],([L
~

][][ UxWUxXURUQ ασ
α

νσ
ν

∗=

holding for arbitrary functions U.  Now suppose U = u  solves the given
nonlinear system of  R{ x;u}.  Then it follows that w = W(x,u) solves the linear
system

                            .0][L
~ =∗ ασ

α wz                           (2)

 => point transformation  z = X(x,u), w = W(x,u).

Next check that this point transformation is an invertible transformation.  If yes,
then it invertibly maps the nonlinear system of PDEs  R{ x;u}  into the linear
system (2).         QED

Remark: Theorems 8 and 9 are easily modified to include mappings of
nonlinear scalar PDEs to linear PDEs through contact transformations.
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Examples of Linearizations of  Nonlinear PDEs Through
Admitted Symmetries and Through Admitted Conservation

Law Multipliers

L INEARIZATION OF BURGERS’ EQUATION

 dependent  and  ),(),( st variableindependen  with };{ Consider 21 txxxux =R
system by thegiven   ),,(  variables 21 uu

,02][ 1
2

1 =−
∂

∂= u
x

u
uR

.0)(2][ 21
12

2 =+
∂
∂−

∂
∂= u

x

u

t

u
uR

equation Burgers' satisfies  Then  1 uu =

.0=−− txxx uuuu
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Linearization Through Admitted Point Symmetries

Burgers’ equation admits at most a finite number of contact symmetries.  Hence
there exists no point or contact transformation that linearizes Burgers’
equation.

But the nonlinear system R{ x;u} admits an infinite set of point symmetries
represented by the infinitesimal generator [Krasil’shchik & Vinogradov (1984)]









∂
∂+

∂
∂+= 21

14/ ),(4]),(),(2[X
2

u
txg

u
utxgtxheu

PDEs of systemlinear   theofsolution arbitrary an  is  )),(),,((  where txhtxg

., txx ghgh ==

=> one can linearize R{ x;u} by an invertible mapping.
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Then
,0),,(),,( 21 === i

jtxgFtxhF α
.4,0,,2 4/2

2
2

1
4/11

2
4/1

1

222 uuu eeue ==== ββββ

tXxX ==⇒ 21 ,

The corresponding linear inhomogeneous system has as a particular solution

).,(),( 4/4/1
2
121 22 uu eeu −− −==Ψ ψψ

� invertible mapping

4/24/1
2
1121 22

,,, uu eweuwtzxz −− −====

from  R{ x;u}  to linear system  S{ z;w}

.,
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∂
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∂
∂

∂
∂=
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Note that 1w  satisfies the heat equation

.0
1

2

12

=
∂

∂−
∂

∂
t

w

x

w

� (non-invertible) Hopf-Cole transformation

.
2 1

1
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w

w
uu

∂
∂−==
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Linearization Through Admitted Conservation Law Multipliers

The nonlinear system R{ x;u} admits an infinite set of conservation law
multipliers of the form ),,(][ UtxU ii Λ=Λ  given by

,][,)(][ 4/
12

4/
2

4/1
2
1

11

222 UUU evUeveUvU −−− =Λ+=Λ

systemlinear   theofsolution any  is  )),(),,((  where 21 txvtxv

,02
1 =−

∂
∂

v
x

v
.012 =

∂
∂+

∂
∂

t

v

x

v

Hence, the necessary conditions for the existence of an invertible mapping of
the nonlinear system R{ x;u} to a linear system are satisfied, where the target
linear system has the same independent variables as the given system.
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In the conservation law arising from the infinite set of multipliers
,][,)(][ 4/

12
4/

2
4/1

2
1

11

222 UUU evUeveUvU −−− =Λ+=Λ  replace ),( 21 vv  by arbitrary
functions ).,( 21 VV
=> conservation law identity for the augmented system, consisting of the given
nonlinear system  R{ x;u}  and the linear system

,02
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∂
∂

v
x

v
:012 =

∂
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∂
∂

t
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x

v
      (*)

][][])([ 24/
1

14/
2

4/1
2
1

1

222

UReVUReVeUV UUU −−− ++
[ ] [ ]tVxVeVxVeU UU D/DD/D4 D/D2 12

4/
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4/1 22

+−−− −−

[ ] [ ].4
D
D

)24(
D
D

 4/
11

1
2

4/ 22 UU eV
t

VUVe
x

−− −+−−= .

Consequently, the sufficiency conditions of Theorem 9 yield an invertible
mapping of the nonlinear system R{ x;u} to a linear system which is the adjoint
of the linear system (*). In particular, this yields the same mapping obtained
from the admitted infinite set of point symmetries.
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L INEARIZATION OF A PIPELINE FLOW EQUATION

Let  R{ x;u}  be the pipeline flow equation

.0][ =+= p
xxxt uuuuR

Linearization Through Admitted Contact Symmetries

R{ x;u} admits an infinite set of contact symmetries represented by the
infinitesimal generator
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� one can linearize R{ x;u} by a contact transformation.  Here

,1
xuX = ,0,0,,1,0,1,0, 21

2
2

1
2

2
1

1
1

2 ==−=====−=== i
x

i utX λβββααααα
.1,0 2

2
2
1

1
2

1
1 ==== λλλλ .4,0,,2 4/2

2
2

1
4/11

2
4/1

1

222 uuu eeue ==== ββββ

In Theorem 7, the corresponding linear homogeneous system has

tXuX x == 21 ,

as functionally independent solutions; the corresponding linear homogeneous
system has a particular solution

,xxuu −=ψ

and the corresponding linear inhomogeneous system has as a particular solution

).,(),( 21 xut −=ψψ
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=> invertible mapping   µ  given by the contact transformation

,,,,, 2121 xwuwxuuwuztz txx −==−===

transforms the nonlinear PDE  R{ x,u}  to the linear PDE

.02

2

=
∂
∂−

∂
∂

t

w

u

w
u

x

p
x



33

Linearization Through Admitted Conservation Law Multipliers

One can show that the scalar nonlinear PDE  R{ x;u}  admits an infinite set of
conservation law multipliers of the form ),,,,(][ tx UUUtxU Λ=Λ  given by

),,(),(][ 21 tUvXXvU x==Λ

 PDElinear   theofsolution any  is  ),(  where 21 XXv

.0
))((

21

12

2 =
∂

∂+
∂
∂

X

vX

X

v p

Hence the necessary conditions for the existence of an invertible contact
transformation that linearizes  R{ x;u}  are satisfied with a target linear system
having  as independent variables

tXuX x == 21 ,
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In the conservation law arising from the infinite set of multipliers
),,(),(][ 21 tUvXXvU x==Λ  replace  v  by an arbitrary function  V.

� conservation law identity for the augmented system, consisting of R{ x;u}
and linear PDE

:0
))((
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2 =
∂
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∂
∂

X

vX

X

v p

    (*)
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p
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D
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               [ ]VxUUU
t xxx )(

D
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where Jacobian
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det
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In verifying the conservation law identity (4.20), note that

,1 xxXx UVV =  .21 XxtXt VUVV +=

� sufficiency conditions of modified Theorem 9 holding for the existence of an
invertible mapping by a contact transformation of  R{ x;u}  to a linear PDE
which is the adjoint of linear PDE (*).

� invertible contact transformation given by

,,,,, 21
21

tXXxx uwxwuxuwtXuX −==−===

maps the nonlinear pipeline equation given  R{ x;u}  into the linear PDE

0)( 221
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∂
∂

X
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X

w
X p

which is the adjoint of the linear PDE (*).
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L INEARIZATION OF A NONLINEAR   TELEGRAPH  EQUATION

Let R{ x;u} be the nonlinear telegraph (NLT) system, given by
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Linearization Through Admitted Point Symmetries

The NLT system admits an infinite set of point symmetries represented by the
infinitesimal generator

2
1

1
2121 ),(),(),(),(X

u
TXF

u
TXFue

t
TXFe

x
TXF tt

∂
∂+

∂
∂+

∂
∂+

∂
∂= −−

where

,log, 1221 utTXuxXX −==−==

PDEs of systemlinear   theofsolution arbitrary an  is  )),(),,((  and 21 TXFTXF
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∂
∂

X

F
e

T

F T

.0
12

=
∂
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∂
∂

T

F
e

X

F T

=> one can linearize R{ x;u} by an invertible mapping.
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Then .,,0,1 1
2

2
2

2
2

1
1

2
1

1
2

2
1

1
1 uee tt −− ======== βαββααβα

The corresponding linear inhomogeneous system has as a particular solution
).,(),( 21 tex==Ψ ψψ

Hence the invertible mapping given by

,,,log, 2121 tewxwutzvxz ==−=−=

transforms the NLT system to the linear PDE  S{ z;w} given by
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Linearization Through Admitted Conservation Law Multipliers

NLT system admits an infinite set of conservation law multipliers of the form
:),,,(][ 21 UUtxU ii Λ=Λ  After some integrability analysis, one obtains

12 ][,][ 21 UU
fUfU =Λ=Λ                  (*)

satisfying  ),,,(  of in terms 21 UUtxf

.02)(,0,0 2211112
1211 =−−=+=+

UUUUUUtUx ffUfUfUfff            (**)

The solution of the first two PDEs of (**) yields f = f(X,T) where
                                     ,log, 12 UtTUxX −=−=
and then the third PDE of (**) combined with (*) yield the infinite set of
multipliers

,))(,(][),(][ 11
2211

−=Λ=Λ UTXvUTXvU
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Hence, the necessary conditions for the existence of an invertible mapping of the
nonlinear NLT system  R{ x;u}  to a linear system are satisfied.

In the conservation law arising from this finite set of multipliers, replace  (v1,v2)
by arbitrary functions (V1,V2).
� conservation law identity for the augmented system, consisting of the given

nonlinear NLT system and the linear system
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�            ,,,log, 1211221 uwxwutTzuxXz =−=−==−==

maps the NLT system into the linear system
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w
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Note that the point transformation
,~,~ 2211 wewww T==

maps the linear system (1) into the linear system
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w T
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which is the particular linear system obtained from linearization of the NLT
system through its admitted infinite set of point symmetries.
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