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DIRECT CONSTRUCTION OF CONSERVATION
LAWS AND CONNECTIONS BETWEEN

SYMMETRIES AND CLs:
Generalizations of Noether’s theorem

• Direct method for construction of local CLs
• Relationship between local CL multipliers and solutions of adjoint

equations
o Self-adjoint case

• Noether’s theorem
o Noether’s formulation
o Boyer’s generalization
o Limitations

• Advantages/comments re: direct method vs. Noether’s theorem
• Further connections between symmetries and CLs
• References
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Uses of Conservation Laws 
 

 

• Constants of motion; hold for any set of data 
 

• For global convergence, important that CLs are preserved for 
approximation procedures  

 
• Determine whether a given nonlinear PDE system can be invertibly 

mapped into a linear PDE system as well as find such a mapping when 
one exists 

 
• To find equivalent nonlocally related systems of a given PDE system   

o Invariant solutions resulting from point symmetries of nonlocally 
related system could yield further solutions of given PDE system 

o Computation of CLs of nonlocally related system could yield 
nonlocal CLs of given PDE system and to non-invertible 
linearizations, etc 
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Direct Method for Construction of Conservation Laws

Given system R{ x;u} of  N  PDEs of order  k  with  n  indep. var.
),...,( 1 nxxx =  and  m  dep. var. :))(),...,(()( 1 xuxuxu m=

NuuutxRuR k ,...,1,0),...,,,,(][ ==∂∂= σσ ,     (1)

a local conservation law (CL) is an expression

0][D...][D][D 1
1 =Φ++Φ=Φ uuu n

n
i

i

operators deriv.  totalare  ,,...,1,D(1); of solutionsany for  holding nii =

Definition.  A PDE system R{ x;u} (1) is totally non-degenerate
if (1) and its differential consequences have maximal rank and are locally
solvable.
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Theorem.  Let R{x;u} (1) be a totally non-degenerate PDE
system. Then for every nontrivial local conservation law

0),...,,,(D][D =∂∂Φ=Φ uuuxu ri
i

i
i

 of (1),  there exists a set of multipliers

,,...,1),,...,,,(][ NUUUxU l =∂∂Λ=Λ σσσ

such that

≡Φ ][D Ui
i ][][ URU σ

σΛ

holds for arbitrary U(x).
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Definition. The Euler operator with respect to   jU is the operator

......DD)1(...DE
...1

1
+

∂
∂−++

∂
∂−

∂
∂= j

ii
ii

s
j

i
ijU

s

s
j

UUU

Theorem.  For any divergence expression   ][D Ui
iΦ ,

one has

.,...,1,0])[(DE mjUi
iU j =≡Φ
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Theorem.  Let ),...,,,(][ UUUxFUF s∂∂= . Then

,,...,1,0][E mjUFjU
=≡

holds for arbitrary U(x)  if and only if

),...,,,(D][ 1UUUxUF si
i

−∂∂Ψ≡

for some set of functions )}.,...,,,({ 1UUUx si −∂∂Ψ

Theorem. A set of local multipliers )},...,,,({ UUUx l∂∂Λσ  yields a
divergence expression for PDE system R{ x;u} (1) if and only if

mjUUUxRUUUx kl
U j ,...,1,0)),...,,,(),...,,,((E =≡∂∂∂∂Λ σ

σ     (2)

holds for arbitrary U(x).
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Summary of direct method to find local CLs 
 

• Seek multipliers of the form 
 

),...,,,(][ UUUxU l∂∂Λ=Λ σσ  

 
with derivatives Ul∂  to some specified order l. 

 
• Obtain and solve the determining equations (2) to find the multipliers of 

local conservation laws 

 
• ),...,,,(][  fluxes ingcorrespond  theFind UUUxU rii ∂∂Φ=Φ   

satisfying the identity 
(3)    ],[D][][ UURU i

i Φ≡Λ σ
σ       

=> CL 
0),...,,,(D][D =∂∂Φ=Φ uuuxu ri

i
i

i  

(1). system PDE of solutions allfor  holding  ][  fluxeswith uiΦ  
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The fluxes are found by either

• directly matching each side of

(4)    ][D][][ UURU i
i Φ≡Λ σ

σ

 .]determined be   to]}[{ known with are ]}[{ and ]}[{ Here[ UURU iΦΛ σ
σ

• through an integral (homotopy) formula
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Example 1-Nonlinear telegraph system

.0],[

,0)1(],[

2

2
1

=−=
=−+−=

xt

xt

vuvuR

uuuvvuR
  (5)

Seek CL multipliers of the form

),,,(],[),,,,(],[ 21 VUtxVUVUtxVU φφξξ ==Λ==Λ   (6)

for (5).  In terms of Euler operators

,DDE,DDE
t

t
x

xV
t

t
x

xU VVVUUU ∂
∂−

∂
∂−

∂
∂=

∂
∂−

∂
∂−

∂
∂=

the multipliers (6) yield a local CL of (5) if and only if
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,0]),[],[],[],[(E

,0]),[],[],[],[(E

21

21

=+
=+

VURVUVURVU

VURVUVURVU

V

U

φξ
φξ

(7)

hold for arbitrary differentiable functions U(x,t), V(x,t).  Equations
(7) hold if and only if

.0)1(

,0

,0)1(

,0

2

2

=−−−+

=−−
=+−

=−

ξξφξ
ξξφ

ξφ
ξφ

Utx

Vtx

VU

UV

UU

U

U
(8)

The solutions of (8) are:

).,(),(),,(),(

),,1(),(),,(),(),1,0(),(
2

2
12

2
12

2
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2
1

5544

33
2

2
1

2211

VUxVUxVUxVUx UeeUee

ttxt
−+−+++++ −==

−=−==

φξφξ

φξφξφξ
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Example 2-Korteweg-de Vries equation

)9(.0][ =++= xxxxt uuuuuR

It is convenient to also write (9) as   ).(][ xxxxt uuuugu +−==

Hence all CL multipliers are of the form

,...2,1),,...,,,,(][ =∂∂Λ=Λ lUUUxtU l
xx .

Then
0))]([(E ≡++Λ xxxxtU UUUUU  

if and only if

+Λ−Λ−Λ− 3DDD xxt U
))((D)( UxxxxtxUxxxxt x

UUUUUUUU ∂Λ++−Λ++
.0)((D)1(... ≡Λ++−++ ∂ Uxxxxt

l
x

l
l
x

UUUU     (10)
• 
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Note that the linear determining equation (10) is of the form

0... 2321 ≡∂++∂++ + t
l
xltxt UUU αααα    (11)

where each  αi   depends at most on  t, x, U  and  x-derivatives of
U.  Since U(x,t) is an arbitrary function, in equation (11),

 
2,...,1,0  hence and s,t variableindependen

 as  treatedbecan   ,,, ofeach  that followsit 

+==
∂∂

li

UUU

i

t
l
xtxt

α
K

Thus equation (11) splits into an overdetermined linear system of
l + 2  determining equations for the local multipliers

),,...,,,,( UUUxt l
xx ∂∂Λ

given by



14

,0DDD~ 3 =Λ+Λ+Λ xxt U  (12)

,0)D(
1

=Λ−∑
=

∂

l

k
U

k
x k

x

  ,1,...,1,0)D(
)!(!

!
))1(1(

1

−==Λ−
−

+Λ−− ∑
+=

∂
−

∂ lq
qkq

kl

qk
U

qk
xU

q
k
x

q
x

,0))1(1( =Λ−− ∂ U
l

l
x

where the “restricted” total derivative operator

L+++= ∂
∂

∂
∂

∂
∂

xUxUtt UgUg ])[(][D
~

in terms of
).(][ xxxx UUUUg +−=
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Now suppose ).,,( UxtΛ=Λ  Then equations (12) are satisfied and
the determining equation (11) becomes

.033

33)( 32

=Λ+Λ+
Λ+Λ+Λ+Λ+Λ+Λ

xxxUUxxxU

xUUUxxUUxxxUxxxxt

UUU

UUUU
 (13)

Equation (13) must hold for arbitrary values of .,,,, xxx UUUtx Hence (13)
splits into six equations. Their solution yields the three local multipliers

.,,1 321 xtUU −=Λ=Λ=Λ
These yield the divergence expressions

),(DD 2
2
1

xxxtxxxxt UUUUUUU ++≡++
),(D)(D)( 2

2
13

3
12

2
1

xxxxtxxxxt UUUUUUUUUU −++≡++

).(D)(D

))((
2

2
12

2
12

2
1

xxxxxxxt

xxxxt

UxUtUtUUxUxUtU

UUUUxtU

+−−+−+−≡

++−
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There is only one additional multiplier of the form

),,,,(][ xxx UUUtxU Λ=Λ

given by
.2

2
1

4 UU xx +=Λ

Moreover, one can show that in terms of the recursion operator

,DDD][*R 1
3
1

3
12

xxx UUU oo
−++=

the KdV equation has an infinite sequence of local multipliers given by

,...2,1,])[*R(2 ==Λ nUU n
n  ,
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General expression relating local multipliers and solutions of adjoint
equations

Consider a system of  N  PDEs  };{ uxR  given by

,,...,1,0),...,,,(][ NuuuxRuR k ==∂∂= σσσ

with  n  independent variables ),...,( 1 nxxx =  and  m  dependent variables
).,...,( 1 muuu =   Let

,,...,1),,...,,,(][ NUUUxRUR k =∂∂= σσσ

where
))(),...,(()( 1 xUxUxU m=

is an arbitrary function and  U(x) = u(x) solves the system of PDEs
R{ x;u}.
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In terms of an arbitrary function )),(),...,(()( 1 xVxVxV m=  the
linearizing operator  ][L U  associated with the PDE system   };{ uxR  is
given by

.,...,1

,D...D
][

...D
][][

][L
1

1...

N

V
U

UR

U

UR

U

UR
VU

k

k

ii
ii

i
i

=












∂
∂++

∂
∂+

∂
∂≡

σ

ρ
ρ

σ

ρ

σ

ρ

σ
ρσ

ρ

and, in terms of an arbitrary function )),(),...,(()( 1 xWxWxW N=  the
adjoint operator  L*[ U] associated with the PDE system R{ x;u}  is
given by

,
][

D...D)1(

...
][

D
][

][*L

...1

1 













∂
∂−+

+








∂
∂−

∂
∂≡
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σρ

σ
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W
U

UR
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k

k

ii
ii

k

i
i

.,...,1 m=ρ
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In particular, σ
σ
ρ

ρρσ
ρσ WUVVUW ][*L][L −  is a divergence

expression.

Let
.,...,1),,...,,,(][ NUUUxUW l =∂∂Λ=Λ= σσσσ

By direct calculation, in terms of Euler operators:

])[(][][*L])[][(E URFUUURU
U ρσ

σ
ρ

σ
σρ +Λ≡Λ   (1)

with

,][
][

D...D)1(

...][
][

D][
][

])[(

...1

1 













∂
Λ∂−+

+








∂
Λ∂−

∂
Λ∂=

UR
U

U

UR
U

U
UR

U

U
URF

l

l

ii
ii

l

i
i

σ
ρ

σ

σ
ρ

σσ
ρ

σ
ρ

.,...,1 m=ρ

(2)
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From (1), it follows that NlUUUx 1)},...,,,({ =∂∂Λ σ
σ  is a set of 

CL multipliers of PDE system };{ uxR  if and only if the right 
hand side of (1) vanishes for arbitrary ).(xU  Moreover, since 
(2) vanishes for any solution )()( xuxU =  of };{ uxR , it 
follows that every set of CL multipliers 

NlUUUx 1)},...,,,({ =∂∂Λ σ
σ  of R{ x;u} is itself a solution of its 

adjoint system of PDEs (which is the adjoint of its linearizing 
system of PDEs)  when U(x) = u(x) is a solution of R{ x;u}, 
i.e.,  
 

.,...,1,0][][*L muu ==Λ ρσ
σ
ρ  
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Theorem.  Consider a given PDE system   };{ uxR .  A set of local

multipliers NUUUx 1)},,,,({ =∂∂Λ σσ
l

K  yields a local conservation law
of };{ uxR  if and only if the identity

][][*L UU σ
σ
ρ Λ  + 









∂
Λ∂−

∂
Λ∂

][
][

D][
][

UR
U

U
UR

U

U

i
i

σ
ρ

σσ
ρ

σ

,,,1,0][
][

DD)1(
1

1
mUR

U

U

ii
ii KLL

l

l

L

l =≡













∂
Λ∂−++ ρσ

ρ
σ

holds for arbitrary ))(,),(()( 1 xUxUxU m
K= in terms of the

components ]}[*L{ Uσ
ρ of the adjoint operator of the linearizing

operator (Fréchet derivative) for   R{ x;u}.
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Theorem.  Consider a given PDE system };{ uxR .  Suppose 
NlUUUx 1)},...,,,({ =∂∂Λ σσ  is a set of local multipliers that yields a local 

conservation law of the PDE system };{ uxR .  Let ]}[*L{ Uσ
ρ  be the 

components of the adjoint operator of the linearizing operator (Fréchet 
derivative) for the PDE system };{ uxR  and let 

))(),...,(()()( 1 xuxuxuxU m==  be any solution of the PDE system 
R{ x;u}.   Then  
 

.0][][*L =Λ uu σ
σ
ρ   
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The situation when the linearizing operator is self-adjoint

Definition.   Let L[U], with its components ],[L Uσ
ρ  be the

linearizing operator associated with a PDE system };{ uxR .
The adjoint operator of L[U]  is L*[ U], with components

][*L Uσ
ρ .   L[U] is a self-adjoint operator if and only if

],[*L]L[ UU ≡  i.e., mUU ,...,1,],[*L][L =≡ ρσσ
ρ

σ
ρ
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It is straightforward to see that if a PDE system, as written, has a
self-adjoint linearizing operator, then

• the number of dependent variables appearing in the system must
equal the number of equations appearing in the system, i.e., N =
m;

• the highest-order partial derivative appearing in the system must
be of even order (assuming the adjoint system is not included in
the given PDE system)

The converse of the last statement is false. For example, consider
the linear heat equation

.0=− txx uu

Its linearizing operator is ,DDL 2
tx −=  with adjoint operator

L.DDL* 2 ≡/+= tx
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One can show that a given PDE system, as written, has a
variational formulation if and only if its associated linearizing
operator is self-adjoint [Volterra (1913), Vainberg (1964), Olver
(1986)].

If the linearizing operator associated with a given PDE system
is self-adjoint, then each set of local CL multipliers yields a local
symmetry of the given PDE system.  In particular, one has the
following theorem.
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Theorem.  Consider a given PDE system  };{ uxR  with N =
m.  Suppose its associated linearizing operator L[U] is self-
adjoint.  Let mlUUUx 1)},...,,,({ =∂∂Λ σσ  be a set of local CL
multipliers for };{ uxR .  Let

=∂∂ ),...,,,( uuux lση ,,...,1),,...,,,( muuux l =∂∂Λ σσ

where U = u is any solution of the PDE system   R{ x;u}.
Then

σ
ση

u
uuux l

∂
∂∂∂ ),...,,,(

is a local symmetry of R{ x;u}.
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Proof.  Since the hypothesis of the previous theorem is satisfied
with L[U] = L*[ U], from the equations of this theorem, it follows
that in terms of the components of the associated linearizing
operator L[U], one has

,,...,1,0),...,,,(][L muuuxu l ==∂∂Λ ρσ
σ
ρ (2)

where )(xu Θ=  is any solution of the given PDE system   R{ x;u}.
But the set of equations (2) is the set of determining equations for a
local symmetry σσ u

luuux
∂

∂∂∂Λ ),...,,,( of PDE system R{ x;u}.

Hence, (1) is a local symmetry of PDE system   R{ x;u}.
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The converse of this theorem is false.  In particular, suppose 

σ
ση

u

luuux
∂

∂∂∂ ),...,,,(  is a local symmetry of a PDE system };{ uxR  

with a self-adjoint linearizing operator L[U].  Let 
),...,,,( UUUx l∂∂Λσ  ),...,,,( UUUx l∂∂= ση , ,,...,1 m=σ  where 

))(),...,(()( 1 xUxUxU m=  is an arbitrary function.  Then it does not 

necessarily follow that mlUUUx 1)},...,,,({ =∂∂Λ σσ  is a set of local CL 
multipliers of R{ x;u} . This can be seen as follows: In the self-
adjoint case, the set of local symmetry determining equations is a 
subset of the set of local multiplier determining equations.  Here 
each local symmetry yields a set of local CL multipliers if and only 
each  solution of the set of local symmetry determining equations 
also solves the remaining set of local multiplier determining 
equations.   
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To illustrate the situation, consider an example of a nonlinear PDE 
whose linearizing operator is self-adjoint but the PDE has a point 
symmetry that does not yield a multiplier for a local CL:  
 

.0)( =− xxtt uuuu   (1) 
 
It is easy to see that PDE (1) has the scaling point symmetry 

,, uuxx αα →→  corresponding to the infinitesimal generator 

.)(X
u

xuu x ∂
∂−=  (2) 

The self-adjoint linearizing operator associated with PDE (1) is 
given by 
 

.2D2DD][L 2222
xxxxxxt UUUUUUU −−−−=  
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The determining equation for CL multipliers ),,,,( xt UUUxtΛ is an
identity holding for all values of ,,,,,,,,,, ttxtttxxtxttxt UUUUUUUUxt

,, xxxtxx UU  and splits into a system of two equations  consisting of

)3(,0)2(D2DD
~ 2222 =Λ+−Λ−Λ−Λ xxxxxxt UUUUUU

and

)4(,0DD~2 =Λ−Λ+Λ
tt UxUtU

in terms of the “restricted” total derivative operator

 
ttxxtx UtUtxxUUtxUttt UgUUgUU ∂

∂
∂

∂
∂

∂
∂

∂
∂
∂

∂
∂ +++++= ])[(D][D

~

.)(][   where xxUUUUg =



31

The first equation (3) is the determining equation for

uxt uuuxt ∂
∂Λ ),,,,(  to be a contact symmetry of the given PDE (1).

 If the contact symmetry satisfies the second determining equation
then it yields a local multiplier ),,,,( xt UUUxtΛ  of PDE (1).

It is easy to check that the scaling symmetry (2) obviously
satisfies the contact symmetry determining equation (3) but does
not satisfy the second determining equation (4) when  u(x,t)  is
replaced by an arbitrary function  U(x,t).

Hence the scaling symmetry (2) does not yield a local
conservation law of PDE (1).
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Noether’s Theorem

In 1918, Emmy Noether presented her celebrated procedure (Noether’s
theorem) to find local CLs for systems of DEs that admit a variational
principle.

When a given DE system admits a variational principle, then the
extremals of the associated action functional yield the given DE
system (the Euler-Lagrange equations). In this case, Noether showed
that if a one-parameter local transformation leaves invariant the action
functional (action integral), then one obtains the fluxes of a local CL
through an explicit formula that involves the infinitesimals of the local
transformation and the Lagrangian (Lagrangian density) of the action
functional.
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Euler-Lagrange equations

Consider a functional ][UJ  in terms of  n  independent variables
),...,( 1 nxxx =  and  m  arbitrary functions ))(),...,(( 1 xUxUU m=

and their partial derivatives to order  k, defined on a domain   ,Ω

.),...,,,(][][ ∫∫ ΩΩ
∂∂== dxUUUxLdxULUJ k

The function ),...,,,(][ UUUxLUL k∂∂=  is called a Lagrangian
and the functional ][UJ  is called an action integral.
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Consider an infinitesimal change of  U:  )()()( xvxUxU ε+→
where )(xv  is any function such that )(xv  and its derivatives to
order k – 1  vanish on the boundary   Ω∂  of the domain   .Ω

The corresponding change (variation) in the Lagrangian   ][UL  is
given by

).(
][

...
][][

),...,,,(),...,,,(

2
...

...
1

1

εε

εεεδ

Ov
U

UL
v

U

UL
v

U

UL

UUUxLvUvUvUxLL

i
jji

jj

i
ji

j

i
i

kkk

k

k

+













∂
∂++

∂
∂+

∂
∂=

∂∂−∂+∂∂+∂+=
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Let
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j
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∂−++

∂
∂=

−

−

l

After repeatedly using integration by parts, one can show that

),(]),[D])[(E( 2εεδ OvUWULvL iU
i ++= l

l

respect toith operator wEuler   theis E  where iU
  iU .
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The corresponding variation in the action integral  ][UJ   is given
by

)()],[])[(E(

)(]),[D])[(E(

][][

2

2

εσε

εε

δεδ

OdnvUWdxULv

OdxvUWULv

LdxUJvUJJ

i

i

U
i

U
i

++=

++=

=−+=

∫∫

∫

∫

Ω∂Ω

Ω

Ω

ll

l

l

Hence if )(xuU =  extremizes the action integral ],[UJ  then the
)(εO  term of  δJ  must vanish and hence

0])[(E =∫Ω dxuLv iu
i

for an arbitrary v(x) defined on the domain Ω.
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Hence, if )(xuU =  extremizes the action integral  ][UJ  then  )(xu
must satisfy the PDE system

.,...,1,0
][

D...D)1(...
][

])[(E
...1

1
mj

u

uL

u

uL
uL i

jj
jj

k
iu

k

k
i ==

∂
∂−++

∂
∂=

(1)

Equations (1) are called the Euler-Lagrange equations satisfied by
an extremum U = u(x) of the action integral J[U]. Thus

Theorem.  If a smooth function  U(x) = u(x)  is an extremum of an
action integral ∫Ω= dxULUJ ][][  with ),,...,,,(][ UUUxLUL k∂∂=
then  u(x)  satisfies the Euler-Lagrange equations (1).
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Noether’s formulation of Noether’s theorem

Here the action integral J[U] is invariant under the one-parameter
Lie group of point transformations

,,...,1),(),(*)(

,,...,1),(),(*)(
2

2

mOUxUU

niOUxxx iii

=++=

=++=

µεεη
εεξ

µµµ

with infinitesimal generator  ,),(),(X ν
νηξ

U
Ux

x
Ux i

i

∂
∂+

∂
∂=

if and only if

∫ ∫Ω Ω
=

*
][**][ dxULdxUL

where   Ω* is the image of Ω under the Lie group of point
transformations
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 transf.ofJacobian  is  )(),(D1)*)(Ddet(J 2εξε OUxx i
i

j
i ++==  

Then .J* dxdx =  Moreover, ][*][ X ULeUL ε=  in terms of the 
infinitesimal generator X.  Consequently, in Noether’s formulation, X 
is a point symmetry of J[U] if and only if 
 

(2)                                                    

  )(])[X),(D][(][)1J(0 2)(X εξεε OdxULUxULdxULe ki
i ++=−= ∫∫ ΩΩ  

 
holds for arbitrary U(x) where  X(k) is the k-th extended infinitesimal 
generator. Hence, if  X is a point symmetry of J[U], then  the  O(ε)  
term in (2) must vanish.  Thus  
 

0][X),(D][ )( ≡+ ULUxUL ki
iξ  
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The one-parameter Lie group of point transformations with inf. gen.
X is equivalent to the one –parameter family of transformations

,,...,1),()],(),([*)(

,,...,1,*)(
2 mOUxUUxUU

nixx
i

i

ii

=+−+=

==

µεξηε µµµµ
 (3)

with k-th extended infinitesimal generator ...][ˆX̂ )( +=
∂

∂
µ

µη
U

k U

Under transformation (3),  )()()( xvxUxU ε+→  has components

),(),(][ˆ)( UxUUxUxv i
i ξηη µµµµ −==

).(][X̂  Hence 2)( εεδ OULL k += Thus

).(][X̂ 2)( εεδ OdxULdxL k += ∫∫ ΩΩ
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Consequently, comparing expressions, after setting

),,(),(][ˆ)( UxUUxUxv i
i ξηη µµµµ −==

it follows that

]][ˆ,[D])[(E][ˆ][X̂ )( UUWULUUL l
lU

k ηη µ
µ +≡    (*)

Lemma. Let ),...,,,(][ UUUxFUF k∂∂=   be an arbitrary function of
its arguments.  Then, in terms of  )(X k  and  )(X̂ k   the following
identity holds:

)).,(][(D][X̂),(D][][X )()( UxUFUFUxUFUF i
i

ki
i

k ξξ +≡+
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Theorem.  Noether’s formulation of Noether’s Theorem.  Suppose a
given PDE system };{ uxR  is derivable from a variational principle, i.e.,
the given PDE system is a set of Euler-Lagrange equations whose
solutions  u(x) are extrema U(x) = u(x) of an action integral J[U] with
Lagrangian L[U].  Suppose the one-parameter Lie group of point
transformations X leaves invariant J[U]. Then

(1) ]])[ˆ,[][),((D])[(E][ˆ UUWULUxULU ii
iU

ηξη µ
µ +−=   (4)

holds for arbitrary functions U(x), i.e., mU 1]}[ˆ{ =µ
µη  is a set of local CL

multipliers of the Euler-Lagrange system;

(2) The conservation law

(5)   0]])[ˆ,[][),((D =+ uuWuLux ii
i ηξ

holds for any solution )(xu Θ= of the Euler-Lagrange system.
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Proof.  Let ][][ ULUF =  in the identity in the lemma. Then

(6)   0)),(][(D][X̂ )( ≡+ UxULUL i
i

k ξ

holds for arbitrary functions U(x).  Substitution for ][X̂ )( ULk  in (6)
through (*) yields (4).  If  U(x) = u(x) solves the Euler-Lagrange system,
then the left-hand-side of equation (4) vanishes. This yields the
conservation law (5).



44

Boyer’s formulation of Noether’s theorem

Boyer (1967) generalized Noether’s theorem to find conservation laws
arising from invariance under higher-order transformations through a
generalization of Noether’s definition of invariance of an action integral
J[U]. Here action integral  J[U] is invariant under a one-parameter
higher-order transformation if its integrand L[U] is invariant to within a
divergence.

Definition. Let   µ
µη

U
UUUx s

∂
∂∂∂= ),...,,,(ˆX̂    be the infinitesimal

generator of a one-parameter local transformation with extension   ∞X̂ .
Let ).,...,,,(ˆ][ˆ UUUxU s∂∂= µµ ηη   X̂  is a local symmetry of J[U]  if and
only if

(8)   ][D][X̂ UAUL i
i≡∞  

for some set of functions

.,...,1),,...,,,(][ niUUUxAUA rii =∂∂=
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Theorem.  Boyer’s generalization of Noether’s theorem.  Suppose a
given PDE system };{ uxR  is derivable from a variational principle, i.e.,
the given PDE system is a set of Euler-Lagrange equations whose
solutions u(x) are extrema U(x) = u(x) of an action integral J[U]  with

Lagrangian L[U].  Suppose µ
µη

U
U

∂
∂= ][ˆX̂ is a local symmetry of J[U].

Then
(1) (9)   ]])[ˆ,[][(D])[(E][ˆ UUWUAULU ii

iU
ηη µ

µ −≡

holds for arbitrary functions U(x), i.e., mU 1]}[ˆ{ =µ
µη  is a set of local CL

multipliers of the Euler-Lagrange system;

(2)  The conservation law

(10)   0])[]][ˆ,[(D =− uAuuW ii
i η

holds for any solution )(xu Θ=  of the Euler-Lagrange system
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Proof.  For the one-parameter local transformation with infinitesimal
generator µ

µη
U

U ∂= ][ˆX̂ , it follows that the corresponding

infinitesimal change )()()( xvxUxU ε+→  has components
].[ˆ)( Uxv µµ η=   Consequently,

)(][X̂ 2εεδ OULL += ∞ .
But

).(]]))[ˆ,[(D])[(E][ˆ( 2εηηεδ µ
µ OUUWULUL i

iU
++=

Hence it immediately follows that

][X̂ UL∞  (11)   ]])[ˆ,[(D])[(E][ˆ UUWULU i
iU

ηη µ
µ +≡

holds for arbitrary functions U(x).  Since µ
µη

U
U ∂= ][ˆX̂  is a local

symmetry of J[U], it follows that equation (8) holds. Substitution for
][X̂ UL∞  in (11) through (8) yields equation (9).  If  U(x) = u(x) solves

the Euler-Lagrange system, then the left-hand-side of equation (9)
vanishes. This yields the conservation law (10).
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The following theorem shows that any conservation law obtained
through Noether’s formulation can be obtained through Boyer’s
formulation.

Theorem.  If a conservation law is obtained through Noether’s
formulation, then the conservation law can be obtained through Boyer’s
formulation.

Proof.  Suppose the one-parameter Lie group of point transformations
with inf. gen. X  yields a CL.  Then equation (6) holds.  Consequently,

(12)   ][D][X̂][X̂ )( UAULUL i
i

k == ∞

where ).,(][(D][ UxULUA i
i

i ξ−=   But equation (12) is just the condition
for X  to be a local symmetry of J[U]. Consequently, one obtains the
same conservation law from Boyer’s formulation.
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Limitations of Noether's theorem

1 The difficulty of finding variational symmetries.  To find variational
 symmetries of a given DE system arising from a variational principle,
first one determines local symmetries σ

ση
u

u
∂

∂= ][X  of the Euler-

Lagrange equations.  Then for each such local symmetry, one checks if
X leaves invariant the Lagrangian L[U] to within a divergence. [Since
all CLs, obtainable by Noether’s theorem, arise from multipliers, one
can simply use the direct method to find the variational symmetries.]

2 A given system of DEs is not variational as written.  A given system
of differential equations, as written, is variational if and only if its
linearized system (Fréchet derivative) is self-adjoint.  Consequently, it
is necessary that a given system of DEs, as written, must be of even
order, have the same number of equations in the system as its number
of dependent variables and be non-dissipative to directly admit a
variational principle.
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3  Artifices may make a given system of DEs variational.  Such
artifices include:

• The use of multipliers.  As an example, the PDE

,0)()( =+′+ xxxxtt uHuuHu

as written, does not admit a variational principle since its linearized
equation 0))()(()( =′+′′+′+ xxxxxxtt uHuHuH ςςς  is not self-adjoint.
However, the equivalent PDE

,0)]()([ =+′+ xxxxtt
x uHuuHue

as written, is self-adjoint!
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• The use of a contact transformation of the variables. As an example, the
ODE

,02 =+′+′′ yyy        (*)

as written, obviously does not admit a variational principle.  But the point
transformation ,, xyeYyxXx =→=→  maps ODE (*) into the variational
ODE .0=′′Y

It is well-known that every second order ODE, written in solved form, can
be mapped into 0=′′Y  by some contact transformation but there is no
finite algorithm to find such a transformation.
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• The use of a differential substitution.  As an example, the Korteweg-de
Vries (KdV)  equation

,0=++ txxxx uuuu

as written, obviously does not admit a variational principle since it is of
odd  order.  But the well-known differential substitution

xvu =
 yields the related transformed KdV equation

0=++ xtxxxxxxx vvvv
 which is the Euler-Lagrange equation for an extremum V = v of the action

integral with Lagrangian

.)()(][ 2
13

6
12

2
1

txxxx VVVVVL −−=
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4 Noether's theorem is coordinate-dependent.  The use of Noether's
theorem to obtain a conservation law is coordinate-dependent since
the action of a contact transformation can transform a DE having a
variational principle to one that does not have one.

On the other hand it is well-known that conservation laws are
coordinate-independent in the sense that a contact transformation
maps a conservation law into a conservation law.

5 Artifice of a Lagrangian.  One should be able to directly find the
conservation   laws of a given system of DEs directly without the need to
find a related action integral whether or not the given system is
variational.
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Advantages/comments re: the direct method to find CLs

1. Works for any system of DEs no matter how it is written.
Finds all local CLs.  [Noether’s thm only finds local CLs.]

2. The number of dependent variables does not have to equal
the number of equations in the system.

3. No functional is required unlike for Noether’s thm.  CLs are
constructed directly.

4. Multipliers correspond to symmetries if and only if the
linearization operator is self-adjoint (N.A.S.C. for action
integral to exist, i.e., given system is variational).
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Example:  Consider the Klein-Gordon eqn 
 

.1,0,0 ≠=− nuu n
tx     (1) 

 
uuttxx n αα === − *,*,*symmetry point   thehas (1)Eqn 1  

u
xunu x ∂

∂−−=↔ ))1((X  

Eqn (1) is variational with action functional 
 

1
1

1
2
1][;][][ +

++−== ∫
n

nxt UUUULdtdxULUJ  

 
(1) Noether’s formulation of Noether’s theorem 

 
 

 
][][*][][][But  

.][***][][*][

Then   .*,*,*Let 

21

1

1

UJUJUJULUL

dtdxULdxdtULUJUJ

UUttxx

n

n

n

≠=⇒=

===

===

+

−

−

∫ ∫
ααα

ααα

αα
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Hence X is not a point symmetry of the action functional J[U] and  
hence there is no resulting CL from Noether’s formulation of N’s thm 
 
(2) Boyer’s formulation of Noether’s theorem 
 

(2)  )))1(()1(((                 

))1((][X

2
1 nxUUUnxUUU

nxUUUUL

xxxtxttx

x
n

−−+−−−
−−=∞

 

 
The r.h.s. of (2) does not correspond to a divergence.  Best way to show 
this: 
 

.0)(2])[X(E ≠+=∞ n
xtU UUUL  

Hence no CL. 
 
(3) Direct method 
 

CL. no Hence

),(function arbitrary an for   0)]))(1([(E xtUUUnxUU txxU ≠−−−
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Determination of fluxes of local CLs  from multipliers

Let NlUUUxU 1)},...,,,(][{ =∂∂Λ=Λ σσσ be a set of CL multipliers for
PDE system R{ x;u}.  Then for arbitrary functions

))(),...,(()( 1 xUxUxU m= , one has

(*)    ][D][][ UURU i
iΦ=Λ σ

σ

found. be  to)},...,,,({ functions ofset  somefor 1
n
i

ri UUUx =∂∂Φ

Two methods:
• Direct method through equating both sides of (*) to find fluxes
• Homotopy operator method
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Example of using direct method:

Consider nonlinear wave equation

(1)    0))(( 2 =− xxtt uucu

Λ[U] = xt   is a multiplier of a local CL of (1).  Then

(2)  ])[(D])[(D)))((D)(D( 2 UXUTUUcUxt xtxxtt −=−

  ),,,,(][),,,,,(][somefor txtx UUUtxXUXUUUtxTUT ==

Then (2) becomes

)(   

)(

))())(()(2( 22

xxUtxUxUx

txUttUtUt

xxxtt

UXUXUXX

UTUTUTT

UUcUUcUcUxt

xt

xt

++++

+++=
−′−

(3)

rest,,,)(,,, of tscoefficien   thezero  toEquate 2
xtxtxttxx UUUUUU
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This yields straightforwardly

∫+−=−= dUUctUUxtcUXxUxtUUT xt )()(][,][ 22
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Use of Symmetries to Find New Conservation Laws from Known
Conservation Laws

Any symmetry (discrete or continuous) admitted by a given PDE
system R{ x;u} maps a conservation law of R{ x;u} into another
conservation law of R{ x;u}. Usually, the same conservation law of
R{ x;u} is obtained.

An admitted symmetry of PDE system R{ x;u} induces a symmetry
that leaves invariant the linear determining system for its multipliers.

Hence, it follows that if we determine the action of a symmetry on a
set of multipliers ]}[{ UσΛ  for a known conservation law of R{ x;u}

to obtain another set of multipliers ]}[ˆ{ UσΛ , then a priori we see
whether or not a new conservation is obtained for R{ x;u}.
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Suppose the invertible point transformation

),
~

,~(),
~

,~( UxUUUxxx ==    (1)

with inverse

),,(
~~

),,(~~ UxUUUxxx ==

is a symmetry of PDE system  };{ uxR . Then for each PDE in  };{ uxR ,
one has

(2)    ]
~

[]
~

[][ URUAUR βα
β

α =

holding for some ]}.
~

[{ UAα
β
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Theorem.  Under the point transformation (1), there exist functions
]}

~
[{ UiΨ  such that

(3)    ]~[D~][D]~[J UUU i
i

i
i Ψ=Φ

where the Jacobian determinant

(4)   

D
~

D
~

D
~

D
~

)~,,~(

),,(
]

~
[J

1

1
1

1

1

1

n
nn

n

n

n

xx

xx

xxD

xxD
U

L

MMMM

L

L

K

K ==

and

(5)    

D
~

D
~

D
~

D
~

][][][

]
~

[

1

1

21

221

n
ii

n
ii

n

i

xx

xx

UUU

U

nn
L

MMMM

L

L ΦΦΦ

±=Ψ
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Theorem.  Suppose the point transformation (1) is a symmetry of
};{ uxR  and ]}[{ UσΛ is a set of multipliers for a CL of R{ x;u}  with

fluxes ]}.[{ UiΦ  Then

(7)    ]
~

[D
~

]
~

[]
~

[ˆ UURU i
i Ψ=Λ β

β

where
(8)   ,,,1],[]

~
[]

~
[J]

~
[ˆ NUUAUU K=Λ=Λ βα

α
ββ

with the components of the derivatives in ]}[{ UαΛ  expressed in terms

of the prolongation of point transformation (1).  In (7), ]
~

[UiΨ  is given

by determinant (4); in (8): ]
~

[UAα
β  is obtained from (2), ]

~
[J U  is obtained

from (3).

After replacing

 corollary  following  theobtains one  (7),in  etc.  ,by    
~

,by    ~ αα UUxx ii
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Corollary.  If ]}[{ UαΛ  is a set of multipliers yielding a conservation

law of PDE system  R{ x;u}   that has the symmetry (1), then ]}[ˆ{ UβΛ
yields a set of multipliers for a conservation law of R{ x;u}   where

]}[ˆ{ UβΛ  is given by (8) after replacing   ix~  by  σUxi ~
, by σσ

iUU
~,  by

,σ
iU  etc.  The set of multipliers  ]}[ˆ{ UβΛ  yields a new conservation

law of PDE system  R{ x;u}  if and only if this set is nontrivial on all
solutions  U = u(x)  of PDE system  R{ x;u} , i.e.

,,,1],[][ˆ Nucu K=Λ≡/Λ βββ   for some constant  c.



64

Now suppose the symmetry (1) is a one-parameter Lie group of point
transformations

(9)    
~

);
~

,~(,~);
~

,~(
~~
UeUxUUxeUxxx XX εε εε ====

in terms of its infinitesimal generator (and extensions)

σ
σηξ

Ux

j UxUx j ~~ )
~

,~()
~

,~(X
~

∂
∂

∂
∂ += .

If (6) holds, then from (3) and the Lie group properties of (9), it follows
that

(10)    ];[D])[][(];[J εε σ
σ

ε UURUeU i
i

X Ψ=Λ

in terms of the (extended) infinitesimal generator

σ
σηξ

Ux

j UxUx j ∂
∂

∂
∂ += ),(),(X .
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Then, after expanding both sides of Eq. (10) in terms of power
series in ε, one obtains an expression of the form

(12)   .]);[(][];[ˆ
0!

1

=
Ψ=Λ∑ ∑ εε

σ
σ εεε UDURpU i

d
d

pi
pp

p

p

Corresponding to the sequence of sets of multipliers

,,2,1]},;[ˆ{ K=Λ ppUσ

arising in expression (12), one obtains a sequence of CLs

K,2,1,0]);[(D
0

==Ψ
=

pui

d
d

i p

p

εε ε

for system R{ x;u} from its known CL

.0][D =Φ ui
i
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EXAMPLE 1

0

,0)21( 2

=−
=−−+

tx

u
x

u
t

uv

euev

has CL multipliers

)))2/)2((cos(
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2
1)2/(

2
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2
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U

UUtU
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+++

++−==Λ

++==Λ
+−

+−

φ

ξ

and corresponding fluxes

)))2/)2((sin(       

))2/)2((cos(2(2

),2/)2((cos(2

2
1

2
1)2/(

2
1)2/(

2
1

2
1

u

uutu

utu

exv

exveeX

exveT

++−

++=
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+−
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The given PDE system obviously has the symmetries

)~,~,~,~(),,,( vuxtvuxt −−=   (reflection)

and

)~,~,~,~(),,,( ε+= vuxtvuxt   (translations)

One can show that these symmetries yield three new
CLs through

(I) Reflection symmetry applied to above CL
(II)  Translation symmetry applied to above CL
(III)  Reflection symmetry applied again to CL

found in (II)
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EXAMPLE 2

,0

,0tanh)sech( 2

=−
=+−

tx

xt

uv

uuuv

has CL multipliers

),tanh(2

)),log(cosh22(

2

22
1

tUVe

UVtxe
x

x

−==Λ

−−+==Λ

φ
ξ

and corresponding fluxes

)).(2tanh)))log(cosh1(22((

))),log(cosh22(2(
22

23
3
1

uvtuuxtveX

uxtvvtueT
x

x

+−++−−=

−++−=
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This PDE system has the point symmetries

v
t

ux
u

t
v

t ∂
∂+

∂
∂+

∂
∂+

∂
∂=

∂
∂= tanhX,X 21

These symmetries yield three new CLs:

I. The )(),( 2εε OO  terms that result from applying the translation
symmetry to the above CL yield two new CLs.

II.  The action of the second symmetry  2X  on the new  )(εO  CL
yields a third new CL.
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