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Uses of Conservation Laws
Constants of motion; hold for any set of data

For global convergence, important that CLs areqrxesl for
approximation procedures

Determine whether a given nonlinear PDE systenbeanvertibly
mapped into a linear PDE system as well as finth sumapping when
one exists

To find equivalent nonlocally related systems giveen PDE system
o Invariant solutions resulting from point symmetregsionlocally
related system could yield further solutions ofegiWPDE system
o Computation of CLs of nonlocally related systemldoueld
nonlocal CLs of given PDE system and to non-intégti
linearizations, etc



Direct Method for Construction of Conservation Laws

Given systenR{x;u} of N PDEs of orderk with n indep. var.
x=(x4,....x") and m dep. varu(x) = (u*(x),...,u™(x)):

R7[u] = R(x,t,u,0u,....0“u) =0, o=1..,N, (1)
alocal conservation laWCL) is an expression
D ®'[u] =D,®'[u] +...+ D, ®"[u] =0
holdingfor anysolutionsof (1); D,,i=1...,n, aretotalderiv.operators

Definition. A PDE systenR{x;u} (1) is totally non-degenerate
If (1) and its differential consequences have makirank and are locally
solvable.



Theorem. Let R{x;u} (1) be a totally non-degenerate PDE
system. Then for every nontrivial local conservataw

D ®'[u] =D,®'(x,u,du,...,0"u) =0
of (1), there exists a set afultipliers
A [U]=A_(xU,d0U,...0'U), o=1...,N,
such that

D,®'[U] =A,[UIR?[U]
holds forarbitraryU(Xx).



Definition. The Euler operatomwith respect toU ! is the operator

0 0 0
E P = i _Di -+ ...t _1SDi...Di .
YU’ ouU (=D, QU

i g

+...

Theorem. Forany divergence expressioD,®'[U],
one has

E, (D;®'[U])=0, j=1..m



Theorem. Let F[U] =F(x,U,0U,...,0°U). Then
E, FIU]I=0 ] =1..m,
holds for arbitraryJ(x) if and only if
FlU]=D,W¥'(x,U,dU,....0°U)
for some set of functiof¥' (x,U,0U,...,05"U)}.

Theorem. A set of local multiplierg A, (x,U,0U .,0'U)} yields a
divergence expression for PDE systefix;u} (1) if and only if

E, (A,(xU,0U,. 0'U)R(xU,0U,...0“U)) =0, j=1...m (2)

holds for arbitraryJ(x).



Summary of direct method to find local CLs

. Seek multipliers of the form
A U]=A_(xU,dU,...0'U)

with derivativesd'U to some specified ordér

. Obtain and solve the determining equations (2 the multipliers of
local conservation laws

Find thecorresponihg fluxes ®'[U] = @' (x,U,0U,...,0"U)
satisfying the identity
AUIR?[U]=D;®'[U], (3)
=>CL
D ®'[u] =D,®'(x,u,du,...,0"u) =0
with fluxes @'[u] holdingfor all solutionsof PDEsysten(1).



The fluxes are found by either

« directly matching each side of
A JUIRU]=D,®' U] (4)
[Here{A_[U]} and{ R°[U ]} areknown with{ ®'[U]} tobedetermined

 through an integral (homotopy) formula



Example 1Nonlinear telegraph system

R[uv]=v, - (U +)u, -u=0, 5)
R,[u,v]=u, -V, =0.

Seek CL multipliers of the form
N, =£EUV]=£&(x,t,UV), A, =¢4U V] =@(x,t,U,V) (6)

for (5). In terms of Euler operators
g,=%-p % p 9 g =09 0 p 9
ouU ou U,

= -D — -
Yoav av, tav,
the multipliers (6) yield a local CL of (5) if armhly if



E, ({[U.VIR[U . V]+¢U,VIR[U,V]) =0, )
E, (S[U.VIR[U,V]+4U,VIR[U,V]) =0,

hold for arbitrary differentiable functiond(xt), V(xt). Equations
(7) hold if and only if

® —4y =0,

@ -U*+DE =0,

@ —¢ ~Ug, =0,

U*+D& —g-Ug, -£=0.

(8)

The solutions of (8) are:

(@)= 01, (&@)=tx-3t), (&@)=@L-1),
(E0 @) = (€U ™), (&,@) = (VT Uet ),
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Thecorresponuhg five localconservabnlawsareobtained
straightfowardly:

D,u+D,[-V] =0,

D, [(x=1t*)u+tv] +D,[(3t* —=x)v-t(iu’ +u)] =0,
D,[v-tu] + D [tv-(Gu’+u] =0,

D, :ex+;u2+v] + DX[_uex+;u2+v] -0
D

t :ex+§u2—v] " Dx[uex+%u2—v] -0

~—~+




Example 2Korteweg-de Vries equation
R{u] =u, +uu, +U,, =0. (9
It is convenient to also write (9) as, = g[u] =—(uu, +u,,,).
Hence all CL multipliers are of the form
AU]=A(t,x,U,0U,...00U), 1 =12,...

Then
E, (NU](U, +UU, +U,,)) =0

if and only if

-D,A-UD,A-D3A+
(Ut +UUX +Uxxx)/\U _Dx((Ut +UUX +Uxxx)/\axu)
+...+(-1)'D! ((U, +UU +U )\, =0, (10)

XXX
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Note that the linear determining equation (10)fithe forn
a+a U +ao0U, +..+a,,0U =0 (11)
where eacha; depends at most ot) x, U and x-derivatives of

U. SinceU(xt) is an arbitrary function, in equation (11),
it follows thateachof U,,d.U.,...,0 U, canbetreatedas

Independernvariable,andhencea, = 0,1 =1,...,| +2

Thus equation (11) splits into an overdetermineddr system of
| + 2 determining equations for the local multigdie

At,x,U,0U,....0.U),
given by

13



DA +UDA+D3A =0, (12)
|
Z(_Dx)k/\aku =0,
k=1 "
| ki
=D, +
o k:zqﬂq!(k -Q)!
A-(-D)A,, =0,

(—Dx)k‘q/\55U =0, g=1...1-1

where the “restricted” total derivative operator

D, =& +9U]2 +(alU]), 55+

In terms of
glU]=-UU, +U

XXX) -

14



Now suppose\ =A(t,x,U). Then equations (12) are satisfied
the determining equation (11) becomes

(/\t +U/\x +/\ )+3/\XXU
+3A\ U, +3N\, U U, =0.

Ux +3/\XUUU)§ +/\UUUU>? (13)

XXX

Equation (13) must hold for arbitrary valuesxgf,U U, ,U. . .Hence (13)
splits into six equations. Their solution yields three local multipliers

A =1 A,=U, A,=tU-x
These yield the divergence expressions

Ut +UUX +UXXX = DtU + DX(%U2 +UXX)’
U (Ut +UUX +UXXX) = Dt(%u 2) + DX(%U?) +UUXX _%Uf)’
(U =x)U, +UU, +U,,)

=D, (3tU?-xU)+D, (-ixU?+tUU  -3tU2-xU  +U)). y



There is only one additional multiplier of the form

A[U]=A(xt,U,U_U.)

given by

Moreover, one can show that in terms of the reoareperator
R*[U]=DZ+1U+1D'oUoD

X’

the KdV equation has an infinite sequence of |lowaltipliers given by

A, =(R*[U])"U, n=12,...

16



General expression relating local multipliers and slutions of adjoint
equations

Consider a system dil PDEs R{x;u} given by
R’[u] = R?(x,u,0u,...,0u) =0, o=1...,N,

with n independent variables= (x,...,x") and m dependent variables
u=(u',...um). Let

R’[U]=R?(x,U,0U,...0"U), o=1...N,

where
U (X) = (U*X),...U"(x))

IS anarbitrary function andU(x) = u(x) solves the system of PDEs
R{x;u}.
17



In terms of ararbitrary functionV (x) = (V*(X),...V (X)), the
linearizing operatorL[U] associated with the PDE systeRR{ x;u} is

given by

LO[UIV? = oR7[U] | 0R [U]Di v+ R [U]Di .D; V7,
ou” ou/” U/’ o

gy

o=1...,N.

and, in terms of aarbitrary functionW(x) = (W,(X),... W (X)), the
adjoint operator L*[ U] associated with the PDE systéthx;u} is

given by
L*Z[U]WUEaR [U]W -D. MWJ +...
0 ou/”

U Jo g |

+(-1)*D, ..D. [aRU[U]WO.}
1 k aU,O

gy

po=1...m

18



In particular W,L°[UV? -VZL*7[UW, is a divergence
expression

Let
W, =A_[U]=A,(xU,dU,...0'U0),o =1,...,N.

By direct calculation, in terms of Euler operators:

Ey. (NJUIRTU]) =L* [UIA,[U]+F,(RU]) (1)

with
F, (RU) = Dl R - D("/g [E]R”[U]j

po=1...m
+(-1'D, ..D, [OQJUE)U] R[U ]J,

(2)

19



From (1), it follows tha§ A’ (x,U,dU,...,0'U)})_, is a set of
CL multipliers of PDE systerR{ x;u} if and only if the right
hand side of (1) vanishes for arbitr&tyx). Moreover, since
(2) vanishes for any solutidm(x) = u(x) of R{x;u}, it
follows that every set of CL multipliers
{N7(x,U,0U,...,0'U)" of R{xu} is itself a solution of its
adjoint system of PDEs (which is the adjoint oflingarizing
system of PDEs) whdd(x) = u(x) is a solution oR{x;u},
le.,

L*7 [ulA,[u]=0, p=1..m

20



Theorem. Consider a given PDE systenR{x;u}. A set of loce
multipliers{A_(x,U,dU,...,0°U)}}_, yields a local conservation law
of R{x;u} if and only if the identity

0 ONU] sor 11 [ ONIYU] oo
L5 IUIA[U] + = 2 R[] Di[ i R[U]j

U,O

+”'+(_1)£Di1"'Dif[aa/[\jgg] RU[U]]EO, p=1...,m,

holds for arbitrary U(x) = (U*(x),...,Uu™(x))in terms of th
components{L*7[U]} of the adjoint operator of the linearizing

operator (Fréchet derivative) foR{ x;u}.
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Theorem. Consider a given PDE systdRf x;u} . Suppose
{A,(x,U,0U,...0'U)}", is a set of local multipliers that yields a local
conservation law of the PDE systdix;u}. Let{L*7[U]} be the

components of the adjoint operator of the lineagzarperator (Fréchet
derivative) for the PDE systeR{ x;u} and let

U (X) =u(x) = (u*(X),...,u™(X)) be any solution of the PDE system
R{x;u}. Then

L*7 [u]A,[u] =0.

22



The situation when the linearizing operator is seladjoint

Definition.  Let L[U], with its componentd.7[U], be the

linearizing operator associated with a PDE systjw;u} .
The adjoint operator of LJ] is L*[U], with components
L*7[U].  L[U] is a self-adjoint operator if and only
L[U]=L*[U], ie,L[U]=L*7[U], 0, p=1...m

23



It is straightforward to see that if a PDE syste®,writter; has .
self-adjoint linearizing operator, then

* the number of dependent variables appearing irsygeem mu
equal the number of equations appearing in theesyste.,N =
m,

» the highest-order partial derivative appearingh@ $ystem mu
be of even order (assuming tadjoint system is not included
the given PDE system)

The converse of the last statement is false. Famgie, considt
the linear heat equation

u, —u, =0.
Its linearizing operator isL =D2-D,, with adjoint operatc
L*=D>+D, #L.

24



One can show that a given PDE systems, writtep has
variational formulation if and only if its asso@dtlinearizing
operator is self-adjoint [Volterra (1913), Vainbe(@P64), Olver
(1986)].

If the linearizing operator associated with a given PD&tesy
Is selfadjoint, then each set of local CL multipliers g&la loce
symmetry of the given PDE system. In particulare dvas the
following theorem.

25



Theorem. Consider a given PDE systeR{ x;u} with N =
m. Suppose its associated linearizing operhfbl is self-

adjoint. Let{A(x,U,dU,....0'U)}"_, be a set of local CL
multipliers forR{x;u}. Let

n?(x,u,0u,....0'u) =A_(x,u,0u,...,0'u), o =1,....m,

whereU = uis any solution of the PDE systerR{ x;u}.
Then
n”(x,u,au,...,a'u)%
ou

IS a local symmetry dR{ x;u}.

26



Proof. Since the hypothesis of the previous theorem isfeat
with L[U] = L*[ U], from the equations of this theorem, it follows
that in terms of the components of the associateaiizing
operator L], one has

L2 [ulA, (x,u,du,....0'u) =0, p=1,...m, (2)
whereu = O(X) is any solution of the given PDE systeRY x;u}.
But the set of equations (2) is the set of detemgiequations for a

local symmetry/\a(x,u,au,...,a'u)au%of PDE systenR{x;u}.
Hence, (1) is a local symmetry of PDE systdr{ x;u}.

27



The converse of this theorem is falseln particular, suppose
ﬂ”(x,u,au,...,a'u)w% Is a local symmetry of a PDE systéfix; u}

with a self-adjoint linearizing operator]. Let
A, (x,U,0U,...0'U) =n?(x,U,dU,...,0'U), o =1....m, where

U (X) = (U*(X),....U™(X)) is an arbitrary function. Then it does not

necessarily follow thatA, (x,U,0U,...,0'U)} . is a set of local CL

multipliers of R{ x;u}. This can be seen as followns:the self-
adjoint case, the set of local symmetry determimggations is a
subset of the set of local multiplier determiningiations. Here
eachlocal symmetry yields a set of local CL multipiaf and only
each solution of the set of local symmetry determingtgiations
also solves the remaining set of local multiplietastmining
equations.

28



To illustrate the situation, consider an exampla abnlinear PDE
whose linearizing operator is self-adjoint but BFi2E has a point
symmetry that does not yield a multiplier for adbCL.:

utt _U(UUX)X = O (1)

It is easy to see that PDE (1) has the scalingt gyimmetry
X - ax,U - au, corresponding to the infinitesimal generator
0
X=U-xu)—. (2
(U-xu)-- (2)
The self-adjoint linearizing operator associatethwADE (1) is
given by

L[U]=D-U’D2-2UU D, -2UU _-U?.

29



The determining equation for CL multipliefgt, x,U,U,,U )is an
identity holding for all values df,x,u,U,,U,,U,,U,,U,.U,.,U

X xx 1t Tt

U,..U,. and splits into a system of two equations coimgjsif
D’A-U?D?A-2UU D A-(UU_+U)A=0, (3
and
2\, +D/Ay, ~D,A, =0, (4)
In terms of the “restricted” total derivative optna

D, =& +U, & +Uy 58+ g[UT53 +U,, 58 + D (gU]) 32

U,

where glU]=UUU,),.
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The first equation (3) is the determining equafmn
A(t, x,u,u,,u, )< to be a contact symmetry of the given PDE (1).

If the contact symmetry satisfies the second deteng equation
then it yields a local multipliei(t,x,U,U,,U ) of PDE (1).

It is easy to check that the scaling symmetry Rjiausly
satisfies the contact symmetry determining equd®piut does
not satisfy the second determining equation (4)rwbgt) is
replaced by an arbitrary functiod(xt).

Hence the scaling symmetry (2) does not yield alloc
conservation law of PDE (1).

31



Noether's Theorem

In 1918, Emmy Noether presented her celebratecedoe Noether’'s
theoren) to find local CLs for systems of DEs that admitaaiational

principle.

When a given DE system admits a variational priecifhen the
extremals of the associated action functional yile&dgiven DE
system (thdzuler-Lagrange equationsin this case, Noether showed
that if a one-parameter local transformation leameariant the action
functional (action integral), then one obtainsfiuges of a local CL
through an explicit formula that involves the infgsimals of the local
transformation and the Lagrangian (Lagrangian dgnsf the action
functional.
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Euler-Lagrange equations

Consider a functional[U] in terms ofn independent variables

x=(x',...,x") and m arbitrary functiond) = (U*(x),...U "(X))
and their partial derivatives to ord&r defined on a domainQ,

J[U] :jQ L[U]dx:jQ L(x,U,dU,....0"U)dx

The functionL[U] =L(x,U,0U,...,0“U) is called aLagrangian
and the functional[U] is called araction integral

33



Consider an infinitesimal change @f. U (X) - U (X) +&v(X)
wherev(x) is any function such thax) and its derivatives to
orderk — 1 vanish on the boundargQ of the domain Q.

The corresponding change (variation) in the LagiemgL[U] is
given by
A = L(x,U +e&v,0U +&,...,0"U + &*v) - L(x,U,dU,...,0"U)

_ JoLu] i, oLU] OL[U]
=& ———V + —V. +...+ :
ou' aul T aU!

Jpe-Jk

Vo j+0(£2).

e
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Let

I I Jk2 aUI
| | Py
+V: [OL[LiJ] +..+(-)*°D. ..D, ali_[U] j+
Uy, © oYy
+v aL[U]
FROUL L

After repeatedly using integration by parts, one slaow that

A = £(VE,, (L[U]) + D W'[U,\]) +O(£?),

where E  is theEuleroperator wth respect toU y

35



The corresponding variation in the action integdlU] is giver
by

& = J[U + & - J[U] =de_dx
=¢ jQ (VE,, (L[U]) + D,W'[U,v])dx+O(&?)
= &( iji E, (L[U])dx+ jagwﬁ[u Vln'da) +O(£?)

Hence ifU =u(x) extremizes the action integrd[U], then th
O(¢) term of 4J must vanish and hence

Lv‘ E. (L[u))dx=0

for anarbitrary v(x) defined on the domai.
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Hence, ifU =u(x) extremizes the action integral[U] then u(x)
must satisfy the PDE system

oL [U]

+(-)*D,..D, =0, j=1..m

Loul (1)

B, (Hu) ==

Equations (1) are called tlkiler-Lagrange equationsatisfied by
an extremuntJ = u(x) of the action integral[U]. Thus

Theorem. If a smooth functionU(x) = u(x) is an extremum of an
action integrall[U] = jQ L[U]dx with L[U] =L(x,U,dU,....0"U),
then u(x) satisfieshe Euler-Lagrange equationg(1).
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Noether’s formulation of Noether’'s theorem

Here the action integrd[U] is invariant under the one-parameter
Lie group of point transformations

(x*)' =x +&f' (x,U)+0(£?), i=1...n,
UH* =U* +en”(x,U)+0(&%), u=1...m,

0
ouv’

with infinitesimal generatorX = &' (x,U )% +1" (x,U)

if and only if

jQ* L[U*] dx* = jQ L[U]dXx

where Q* is the image of2 under the Lie group of point
transformations

38



J=detD, (x*)') =1+&D, &' (x,U) +O(&*) is Jacobiarof transf.
Thendx* = Jdx Moreover,L[U*] =e”L[U] in terms of the

Infinitesimal generator X. Consequently, in Noe¥hérmulation, X
IS a point symmetry of{U] if and only if

0= jQ (X -DL[U]dx= ,s_'Q(L[U]Difi (x,U) +X©OL[U])dx+O(£?)
(2)

holds for arbitranyJ(x) where XY is thek-th extended infinitesimal
generatorHence, if X is a point symmetry dfU], then theO(e)
term in (2) must vanish. Thus

L[U]D, &' (x,U)+ X L[U]=0

39



The one-parameter Lie group of point transformatiamth inf. gen.
X Is equivalent to the one —parameter family ohgfarmations

(x*)' =x', i=1...,n,

. 3
(U*#* =U* +£n*(x,U)-U & (x,U)]+O(£%), u=1,...m, )

with k-th extended infinitesimal generatéf =7*[U]-2; +...

Under transformation (3)UJ (x) —» U (X) + &v(X) has components
V4 (x) =7“[U]=n*(xU) U E (xU)

Henced. = eX®L[U]+0O(e?).  Thus

de_dxz £ ij((k) L[U Jdx+O(?).

40



Consequently, comparing expressions, after setting
V4(X) =A4[U] =" (xU) -U /& (x V),
it follows that
X©LU]=A*[UIE,. (LU +DW'U AUT]  (¥)

Lemma. Let F[U]=F(x,U,dU,...,0“U) be an arbitrary function of

its arguments. Then, in terms " and X% the following
identity holds:

XWF[U]+F[UID,& (x,U) =X®F[U]+D; (F[U]E (x,U)).

41



Theorem. Noether’s formulation of Noether’'s Theorem. Suppose a
given PDE systerR{ x;u} is derivable from a variational principle, i.e.,

the given PDE system is a set of Euler-Lagrangatamus whose
solutions u(x) are extrema&J(x) = u(x) of an action integral[U] with
LagrangiarL[U]. Suppose the one-parameter Lie group of point
transformation leaves invariani[U]. Then

(1) A*[V]E, (L[U]) =-D; (&' (xU)LIU]+W'[U,AV]]) (4)

holds for arbitrary function®(x), i.e.{/7“[U]} -, is a set of local CL
multipliersof the Euler-Lagrange system;

(2) The conservation law
D, (&' (x,u)L[u] +W'[u,Au]]) =0 (5)

holds for any solutiotl = ©(X) of the Euler-Lagrange system.
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Proof. Let F[U] =L[U] in the identity in the lemma. Then
X®LU]+D, (LUI¢' (xU)) =0 (6)

holds for arbitrary functiondJ(x). Substitution forX®L[U] in (6)

through (*) yields (4). IfU(X) = u(x) solves thezuler-Lagrange syste

then the left-hand-side of equation (4) vanishesis Tyields the
conservation law (5).
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Boyer’'s formulation of Noether’s theorem

Boyer (1967) generalizeNoether’'s theorem to find conservation I
arising from invariance under higher-order transfations through
generalization of Noether’s definition of invari@of an action integral
JJU]. Here action integral JU] is invariant under a one-paramt
higher-order transformation if its integrahfU] is invariant to within
divergence.

Definition. Let X:ﬁ”(x,u,au,...,OSU) be the infinitesimal

0
ou“
generator of a one-parameter local transformatidgh extension X.
Let A*[U] =A*(x,U,dU,...,0%U). X is a local symmetry ai[U] if and
only if

N

X“L[U]=D,A[U] (8)
for some set of functions

AU]=A(xU,0U,...0"U),i=1...n
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Theorem. Boyer’'s generalization of Noether’s theorem.Suppose a
given PDE systerR{ x;u} is derivable from a variational principle, i.e.,

the given PDE system is a set of Euler-Lagrangatemus whose
solutionsu(x) are extrema&J(x) = u(x) of an action integral[U] with

Lagrangian_[U]. Supposex :ﬁ”[U]wiﬂis a local symmetry alfU].
Then | |
(1) 77V IE,. (LIU]) =D; (ATU]-W'U,A[UT]) (9)

holds for arbitrary functionsl(x), i.e. {7“[U]} -, is a set ofocal CL
multipliersof the Euler-Lagrange system

(2) The conservation law

D, (W'[u,7[u]] - ATu]) = 0 (10)
holds for any solutiotl = ©(X) of the Euler-Lagrange system
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Proof. For the one-parameter local transformation witimitésimal
generatoiX =/77[U] 2, it follows that the corresponding
infinitesimal chang®J (X) - U (X) +&v(X) has components
v¥(x) =A*[U]. Consequently,
A = eX°L[U]+O(£?).
But
d =£(A*[U]E,. (L{U]) + D,(W'[U,A[UT])) +O(?).

Hence it immediately follows that

X“LU] =7*[V]E,. (L[U]) +D;(W'[U,A[U]]) (11)
holds for arbitrary function8(x). SinceX =7*[U]J% is alocal
symmetry ofJ[U], it follows that equation (8) holds. Substitutifor
X“L[U] in (11) through (8) yields equation (9). U(x) = u(X) solves
the Euler-Lagrange system, then the left-hand-siag®uation (9)
vanishes. This yields the conservation law (10).
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The following theorem shows that any conservatam dbtained
through Noether’s formulation can be obtained tgloBoyer’s
formulation.

Theorem. If a conservation law is obtained through Noether’s
formulation, then the conservation law can be olet@ithrough Boyer’s
formulation.

Proof. Suppose the one-parameter Lie group of point toanmsftions
with inf. gen. X yields a CL. Then equation (®Jds. Consequently,

X®L[U]=X"L[U]=D,A[U] (12)
where A[U] =-D, (L[U]&' (x,U). But equation (12) is just the condition

for X to be a local symmetry gfU]. Consequently, one obtains the
same conservation law from Boyer’s formulation.
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Limitations of Noether's theorem

1 The difficulty of finding variational symmetrieslo find variational
symmetries of a given DE system arising from aati@anal principle,

first one determines local symmetrigs- n“[u]au% of the Euler-

Lagrange equations. Then for each such local syminmane checks if
X leaves invariant the LagrangiapU] to within a divergence Jince
all CLs, obtainable by Noether’s theorem, arisefimultipliers, one
can simply use the direct method to find the vammel symmetries.]

2 A given system of DEs is not variational as writtékgiven system
of differential equations, as written, is varia@bif and only if its
linearized system (Fréchet derivative) is self-adjoConsequently, it
IS necessary that a given system of DdSswritten, must be of even
order, have the same number of equations in thermyas its number
of dependent variables and be non-dissipativeractly admit a
variational principle.

48



3 Artifices may make a given system of DEs variatlorfauch
artifices include:

* The use of multipliersAs an example, the PDE
u, +H'(u)u, +H(u,)=0,

as written, does not admit a variational princgitece its linearized

equationg, +H'(u, )¢, +(H"(u ) +H'(u,))¢, =0 is not self-adjoint.

However, the equivalent PDE
e [uy +H' (U U, +H (u,)] =0,

as written, is self-adjoint!
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* The use of a contact transformation of the vargal#le an example, the
ODE

yn + 2yr + y — O, (*)

as written, obviously does not admit a variatiqoraiciple. But the point

transformationx - X =x,y - Y = ye', maps ODE (*) into the variational
ODEY"=0.

It is well-known that every second order ODE, vertin solved form, can
be mapped intd” =0 by some contact transformation but there is no
finite algorithm to find such a transformation.
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* The use of a differential substitutiohs an example, the Korteweg-de
Vries (KdV) equation

u,,, +uu, +u, =0,

XX

as written, obviously does not admit a variatigoahciple since it is of
odd order. But the well-known differential subsion

u=v,
yields the related transformed KdV equation

Veoox TV Ve TV, =0

XXXX X7 XX

which is the Euler-Lagrange equation for an extnerivl= v of the action
Integral with Lagrangian

L[V] =%(VXX)2 _%(VX)3 _%VX\/t'
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4 Noether's theorem is coordinate-dependdime use of Noether's
theorem to obtain a conservation law is coordimiEeendent since
the action of a contact transformation can tramsfarDE having a
variational principle to one that does not have. one

On the other hand it is well-known that conservatio laws are
coordinate-independent in the sense that a contattnsformation
maps a conservation law into a conservation law.

5 Artifice of a Lagrangian.One should be able to directly find the
conservation laws of a given system of DEs dyegithout the need to
find a related action integral whether or not theeg system is
variational.
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Advantages/comments re: the direct method to find Cs

. Works for any system of DEsno matter how it is written.
Finds all local CLs. [Noether’s thm only finds loal CLs.]

. The number of dependent variables does not have &xjual
the number of equations in the system.

. No functional is required unlike for Noether’s thm. CLs are
constructed directly.

. Multipliers correspond to symmetries if and only ifthe
linearization operator is self-adjoint (N.A.S.C. f@ action
Integral to exist, i.e., given system is variatioria

53



Example: Consider the Klein-Gordon egn
u,-u"=0,nz01 (1)

Eqn(1) hasthepointsymmetryx* = o™ "x, t* =t,u* = au
o X=Uu-0- n)xux)i
ou

Eqgn (1) is variational with action functional

J[U] ZJL[U]dtd)C L[U] = _%Utux + 1y n+1

n+1
(1) Noether’s formulation of Noether’s theorem

Letx* =g "x, t* =t,U* =aqU. Then
J[U*] = J[aU] :jL[u*] dt* dx* :al‘”jL[aU]dtdx
But L[aU]=a""L[U] = J[U*] =a?J[U] % J[U]
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Hence X is not a point symmetry of the action fumel JJU] and
hence there is no resulting CL from Noether’s foiahan of N’s thm

(2) Boyer's formulation of Noether’s theorem

X°L[U]=U"(U -xU,(L-n))
_%(Ux(ut — XU, @-n) +Ut(Ux _XUxx(l_n))) (2)

The r.h.s. of (2) does not correspond to a divazgerBest way to show
this:

E,(X"LU])=2U, +U ") £ 0.
Hence no CL.

(3) Direct method

E,[(U-xU, Q-n))U, —U)] # 0 for anarbitraryfunctionU (t, x)

HencenoCL.
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Determination of fluxes of local CLs from multipliers

Let{A_[U]=A_(x,U,dU,....0'U)})_ be a set of CL multipliers for
PDE systenR{x;u}. Then for arbitrary functions
U (X) = (U*(X),...U™(x)), one has

AJUIR U] =D;®'[U] (¥)
for somesetof functiong{®' (x,U,0U,...,0'U)}", to befound.

Two methods
 Direct method through equating both sides of (*)inid fluxes
 Homotopy operator method
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Example of using direct method:

Consider nonlinear wave equation
U, —(C*(Uu,), =0 (1)
A[U] = xt is a multiplier of a local CL of (1). Then
xt(D, (U,) ~ D, (c*(U)U,)) = D,(T[U]) - D, (X[U]) (2)
forsome T[U]=T(xt,U,U,,U,),X[U]=X(xt,U,U,,U,)
Then (2) becomes

xt(U, —2c(U)c'(U)(U,)* -c*(U)U,,)
= (T, +T U, +TUtUtt +TUXUtx) (3)
+ (Xx + XUUX t XUtUtx + XUXU xx)

Equateto zero thecoefficiertsof U U, ,U,.,(U )?,U,,U,,rest
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This yields straightforwardly

T[U]=xtU, —xU, X[U]=-xtc?(U)U, +tjc2(U)du
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Use of Symmetries to Find New Conservation Laws frorKnown
Conservation Laws

Any symmetry (discrete or continuous) admitted mgnen PDE
systemR{x;u} maps a conservation law 8K x;u} into another
conservation law oR{x;u}. Usually, the same conservation law of
R{x;u} is obtained.

An admitted symmetry of PDE systdRfix;u} induces a symmetry
that leaves invariant the linear determining systenits multipliers

Hence, it follows that if we determine the actidrasymmetry on a
set of multiplierd A [U]} for a known conservation law & x;u}

to obtain another set of multiplie{rg\”[U 1}, thena prioriwe see
whether or not a new conservation is obtainedrforu}.
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Suppose the invertible point transformation
x=x(X,U), U=U(XU), 1)
with inverse
X =X(x,U), U=U(xU),

Is a symmetry of PDE systerR{ x;u}. Then for each PDE irR{x;u},
one has

RU] = AJ[UIRAIU] (2)

holding for some A5[UT}.
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Theorem. Under the point transformation (1), there existchions
{WUT} such that

JUID;®'[U]=D,W'[U] (3)
where the Jacobian determinant

D,x* .. D,x"
~ DO, X"
qo1= DX o p T g
D(X",...,X") ; S :
D x* D X"
and
U] U] ®"[U]
- D, X' ... D X"
WhU]=+ " : : (5)
D, X' D, x"
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Theorem. Suppose the point transformation (1) is a symmeitry
R{x;u} and{A_[U]}is a set of multipliers for a CL &&{x;u} with

fluxed®'[U]}. Then
ASUIR‘IUT =D, W'[U] (7)

where

AplUI=JU]ASUIA U], B=1....N, (8)
with the components of the derivatived i, [U]} expressed in terms
of the prolongation of point transformation (1h (7), W'[U] is given
by determinant (4); in (8)A3[U] is obtained from (2)J[U] is obtained
from (3).

After replacing

~

X' by x, U% by U?, etc.in (7), oneobtainsthefollowing corollary
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Corollary. If {A,[U]} is a set of multipliers yielding a conservation
law of PDE systenR{x;u} that has the symmetry (1), thigh[U]}

ylelds a set of multipliers for a conservation IaiﬁR{x u} where
{/\ﬁ[U]} is given by (8) after replacingk’ by x',U?byU? U by

U7, etc. The set of multlpller$/\ﬁ[u I} yields a new conservation

law of PDE systenR{x;u} if and only if this set is nontrivial on all
solutions U = u(x) of PDE systemR{x;u}, i.e.

Ag[ul £cA4u], B=1...,N, for some constant.
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Now suppose the symmetry (1) is a one-parametegiroep of poir
transformations

~

=x(%,U:6)=e*%X, U=U(XU;e)=e*U (9)

In terms of its infinitesimal generator (and extens)

~

X=&(XU) 2 +n° (%,

If (6) holds, then from (3) and the Lie group praps of (9), it follows
that

JU; ele” (A[UIR°[U]) =D,W'[U;e]  (10)

In terms of the (extended) infinitesimal generator

X =& (xU) & +n7(xU) ¢

U’

64



Then, after expanding both sides of Eq. (10) im&of power
series ing, one obtains an expression of the form

> €A, IU; pIR7UI =Y €PD (345 W' Use))| . (12)
Corresponding to the sequence of sets of multglier
{AlU;plh p=12...,
arising in expression (12), one obtains a sequehCe.s
D. :T‘},W‘[u;g])‘gzo =0, p=12...
for systemR{x;u} from its known CL

D ®'[u] =0.
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EXAMPLE 1

v, + @-2e*)u, —€" =0,
v, —u, =0
has CL multipliers
/\1 — g — e—%(U+t/ﬁ) Sln(%(v + (X+ 2eU )/\/é)’
A, = @=-eV"D (2eV sin(V +(x+ 26" ) //2))
+cos@ (V +(x+2e”)/v2)))
and corresponding fluxes
T =272 cos (v + (x + 26") [4/2),
X = Ze‘%(u”t/\@) (+/2¢" COS% (Vv+(x+2e")//2))
—sin@ (v + (x+2¢")/4/2)))
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The given PDE system obviously has the symmetries
(t,x,u,v) =(-t,X,0,-V) (reflection)
and
(t,x,u,v) =(t,X,0,V+¢) (translations)

One can show that these symmetries yield three new
CLs through

()  Reflection symmetry applied to above CL

(I)  Translation symmetry applied to above CL

(II1)  Reflection symmetry applied again to CL
found in (II)
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EXAMPLE 2

v, —(sechu)u, +tanhu =0,
vV, —u, =0,

has CL multipliers

N, =& =€"(2x+t* -V ? = 2log(cosiV)),
/\2 == 2ex(\/tanHJ _t)’

and corresponding fluxes

T =€ (2tu _%V3 +v(t2 +2Xx - 2log(coshu))),

X =e*((v* —t* — 2x + 2(L+log(costu))) tanhu — 2(vt + u)).
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This PDE system has the point symmetries

Xlzg, Xzzvg+tanhu 0 + 0 +1 0
ot ot OX 0Ou ov

These symmetries yield three new CLs:

l.  TheO(g), O(¢°) terms that result from applying the translation
symmetry to the above CL yield two new CLs.

Il.  The action of the second symmet¥, on the newO(g) CL
yields a third new CL.
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