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Point symmetries 
 
*Lie’s algorithm to find them 
 
*Lie’s classical method to find corresponding invariant 
solutions 
 
Lie (1880s):  Introduced the notion of invariance of a PDE under 
continuous groups (one-parameter Lie groups) and used this notion 
to find special solutions (called invariant, similarity or automodel 
solutions) 
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• Gave algorithm to find admitted point or contact symmetries 
from solving related linear systems for infinitesimals 
infinitesimal generators (restricted to act 1:1 on space of 
independent/dependent variables) 
 

• Point symmetry yields one-parameter family of solutions from 
a known solution 
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A one-parameter )(ε  Lie group of point transformations )(εg  
acting on a space of two independent variables ),( tx  and dependent 
variable  u  is of the form 
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in terms of its infinitesimal generator 
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Group can also be found from its infinitesimal generator by solving 
the corresponding initial value problem for an autonomous system 
of first order ODEs: 
 

*),*,*,(
*

*),*,*,(
*

*),*,*,(
*

utx
d

du

utx
d

dt

utx
d

dx

η
ε

τ
ε

ξ
ε

=

=

=

 

 
with   ttxxuu === *,*,*    when  .0=ε  
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Group naturally extends to action on derivatives 
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Consequently, one is able to find the set of infinitesimal generators 
admitted by a given system of PDEs. 
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As an example, consider the heat equation   
 

.txx uu =  
 
The group )(εg  leaves invariant the heat equation if and only if 
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Nontrivial six-parameter group admitted by the heat equation: 
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Mapping of a solution into one-parameter 
family of solutions: 
 
Under an admitted group )(εg , any solution ),( txu θ=  of the heat 
equation (if not invariant) maps into the one-parameter family of 
solutions );,( εφ txu =  satisfying the functional equation 
 
         ));,(,,( XXXX εθ εεεε −= texetexeUu  
 
 
 
 



 9

A similarity (invariant) solution  ),( txu θ=  satisfies  
 
      ));,(,,(),();,( XXXX εθθεφ εεεε −== texetexeUtxtx  
 
which holds if and only if ),( txu θ=  satisfies the invariant surface 
condition 

 
            ,),()(),( utxfututx tx =+τξ   
 
i.e.,                                     
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The solution of  
)(),( t
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yields the similarity variable        
 

const),( =txζ  
 
Finally, one obtains the similarity form  
 
                       ),()( txGFu ζ=       (1) 
 
with ),( txG  a specific function of  x  and  t; )(ζF  an arbitrary 
function of .ζ  
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Substitution of (1) into the heat equation is guaranteed to yield a 
reduce ODE satisfied by )(ζF . 
 
Consider the infinitesimal generator   
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admitted by the heat equation.  Solving the characteristic equations 
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with   ttxxuu === *,*,*    when  ,0=ε   yields 
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The group of transformations (2) maps any solution (not invariant) 

),( txu θ=  into the one parameter family of solutions 
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The invariant solutions ),( txu θ=  arising from (2) satisfy the 
invariant surface condition (characteristic PDE) 
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i.e.,                                          
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Then one obtains the similarity solution form  
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Substitution of (3) into the heat equation yields the reduced ODE 
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⇒  similarity solutions  
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Buckingham (1914/15):  Introduced a systematic procedure to 
make every real equation dimensionless. Consequently, a boundary 
value problem (BVP) for a PDE might be reduced to a BVP with 
fewer independent variables. 
 
 

• Reduced solutions resulting from dimensional analysis will 
arise as similarity solutions from invariance under scalings of 
the independent/dependent variables (converse interesting) 

 


