Point symmetries

*Lie’s algorithm to find them

*Lie’s classical method to find corresponding invarant
solutions

Lie (1880s): Introduced the notion of invariance of a PDE under
continuous groups (one-parameter Lie groups) and used this notion
to find special solutions (called invariant, ssmilarity or automodel
solutions)



» Gave agorithm to find admitted point or contact symmetries
from solving related linear systems for infinitesimals
Infinitesimal generators (restricted to act 1:1 on space of
Independent/dependent variables)

* Point symmetry yields one-parameter family of solutions from
a known solution



A one-parameter (&) Lie group of point transformations g(&)

acting on a space of two independent variables (x,t) and dependent
variable u isof theform

X* = X+ &E(X,t,u) +O(£%) = e¥x,
* =t +er(x,t,u)+0O(£%) = e™t,

u* =u+en(xt,u)+0(e%) =e®u=U(xt,u;e),

In terms of its infinitesimal generator X = Ei + r2 +/72.
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Group can aso be found from its infinitessmal generator by solving
the corresponding initial value problem for an autonomous system

of first order ODES:

0 = &(x*,t*,u*),
de
dL =1 (Xx*,t*,ur),
de
U = (s, ),
de

with u*=u, x*=x,t*=t when € =0.



Group naturally extends to action on derivatives

(U)* =u, +&7* (X, t,u,u,,u,) +O(e”) = e u,etc.

X

X naturally extendsto
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Consequently, oneis able to find the set of infinitessimal generators
admitted by a given system of PDEs.



As an example, consider the heat equation
=u,.
The group g(¢) leavesinvariant the heat equation if and only if

=0 =

Uy =U¢

[ (Uy-u)] =0 [7*-n"]

Uy =Uy

X = E(x,t)% + r(t)% +[ (X, t)u+ g(x,t)]aa—u with

r'(t)y-2¢6, =0, 2f -¢&, +& =0, f_—f =0,
O« ~ O =0



Nontrivial six-parameter group admitted by the heat equation:

a _2’ X3:X2+2tg,
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Mapping of a solution into one-parameter
family of solutions:

Under an admitted group g(&), any solution u = 8(x,t) of the heat

equation (if not invariant) maps into the one-parameter family of
solutions u = ¢(x,t; &) satisfying the functional equation

u=U (e”x,e”t,a(e” x,e”t);—¢)



A similarity (invariant) solution u = @(x,t) satisfies
¢(x,t; &) = (x,t) =U (e x,e”t, 8(e™ x,e™t);-¢&)

which holdsif and only if u = 6(x,t) satisfies the invariant surface
condition

é(x,t)u, +7(t)u, = f(x,1)u,
l.e.,

dx _ dt _ du
f(x,t) () f(xtu




ax _ at
¢(xt) ()

The solution of

yields the smilarity variable

¢ (X,t) = const
Finally, one obtains the similarity form
u=F()G(xt) (1)

with G(x,t) aspecific functionof x and t; F({) an arbitrary
function of ¢.
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Substitution of (1) into the heat equation is guaranteedto yield a
reduce ODE satisfied by F(¢).

Consider the infinitessmal generator
—_ 12 1 a
X4—Xt—+t - ZX +§t)u—
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admitted by the heat equation. Solving the characteristic equations
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= X* t*,
de
dt * )
= t* ’
i (t*)
dU*_ 1 2 4 14k %
p =5 (X*)" +5t*Jur,

with u*=u,x* =x,t* =t when £=0, yields
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X =
1—¢&t
tD:L (2)
1-&t
8(2
u* =~/1-é&exp — u.
ey

The group of transformations (2) maps any solution (not invariant)
u = @(x,t) into the one parameter family of solutions

u=¢(x,t; &)

| X H( X t j
= u* = exp , :
1- &t {4(1—&)} 1-t'1-gt
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The invariant solutions u = (x,t) arising from (2) satisfy the
Invariant surface condition (characteristic PDE)

2 — _T1v2 1
xtu, +t°u, = -3 x° +5t]u,
ilel’

dx dt du

xt t? —[x*+1itu

The solution of X:d—zt yields the similarity variable

Xt t
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J(X1) :% = const

Then one obtains the similarity solution form

! :jfexp[‘x jF(Z) (3)

Substitution of (3) into the heat equation yields the reduced ODE
F'(¢)=0

=  Similarity solutions
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Buckingham (1914/15): Introduced a systematic procedure to
make every real equation dimensionless. Consequently, a boundary
value problem (BVP) for a PDE might be reduced to a BV P with

fewer independent variables.

» Reduced solutions resulting from dimensional analysis will
arise as similarity solutions from invariance under scalings of

the independent/dependent variables (converse interesting)
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