Construction of Non-Invertible Mappings Relating PDEs

One can use nonlocally related systems to extemkl @ro
Invertible mappings of given PDESs to ones of simptpe
that can draw on an arsenal of well-known solution
techniques.

In particular, one can find useful nonlocal mapginglating
equivalent PDEs through the use of nonlocally eglat
potential systems.

Firstly, it is shown how to extend the invertibl@pping
algorithms (based on symmetries or CL multiplens) t
nonlocal mappings of nonlinear PDEs to linear PDEs.



Secondly, it is shown how to extend the invertiii@ping
algorithm to nonlocal mappings of linear PDEs widiniable
coefficients to linear PDEs with constant coefintge

Here, one uses the fact that any solution of therd®DE of a
given linear PDE yields a multiplier for a consdrmva law of the
given PDE and correspondingly a nonlocally relditeeiar
potential system of the given PDE.

The aim is to find such a multiplier that yieldsiawertible
mapping of its corresponding nonlocally relate@éinsystem to a
constant coefficient linear system.

In turn this yields a non-invertible (nonlocal) npapg of the given
linear PDE with variable coefficients to an equerdllinear PDE
with constant coefficients.



NON-INVERTIBLE MAPPINGS OF NONLINEAR SYSTEMS
OF PDESTO LINEAR SYSTEMS OF PDES

Suppose a given nonlinear system of PDEs doesdnat écal
(point or contact) symmetries (or, equivalentlyeslmot admit
multipliers for conservation laws) that yield avertible mapping to
a linear system of PDEs.

However, it could happen that a nonlocally relaggdivalent
nonlinear system of PDEs does admit an infiniteo§é&tcal
symmetries (multipliers for conservation laws) thigld an invertible
mapping of the nonlocally related system to somedr system of
PDEs.

Consequently, one obtains a nonlocal (non-invel}iblapping of the
given nonlinear system of PDEs to an equivalemdirsystem of
PDEs.



Example 1. Linearization of the Thomas Equations
The nonlinear system of Thomas equations given by

VvV, —u, =0,

(1)

vV, —uv—-u-v=0,

describes a fluid flow through a reacting medi@mce (1) does not
admit an infinite number of point symmetries, faresit cannot be
linearized by a point transformation. From thetfgquation of (1), a
corresponding potential system is given by

W, =V,
W =, (2)
vV, —uv—-u-v=_0.



One can show that potential system (2) admits tinet p
symmetries

X = ew{[F(x,t)u +H (x,t)]i +[F (X, t)v+ G(x,t)]i +F (x,t)i}
ou ov ow
where(F (x,t),G(x,t),H(x,t)) is an arbitrary solution of

the linear system of PDESs given by

F =G,
F=H,
G, =G+H.



Hence one obtains the point transformation

Z' =X,

Z° =t,

w =e",

wo =e™y,

w’ =e"u,

that 1:1 maps nonlinear system (2) to linear system

ow' s
e
ow' 3
ba
MW W2 4w

0z°



Consequently, one finds that the solutions
(W(Z', z°),wW*(Z", 2°),W’(Z", z*)) of the linear system
yield all solutions, given by

(U(x,t),v(x.)) = —(“ﬁ(x’t) WZ(X")J,

WH(X,t) WX, 1)

of the Thomas equations (1).



From the form of the infinitesimal generator, ildavs
that the locally related subsystem of (2), given by

W, — W, —W =W, =0, (3)

admits the linearizing point symmetries

X = F(x,t)eVvi
ow

whereF(x,t) is any solution of the linear PDE

F,—F —-F, =0

In particular, one obtains the point transfationW =e™ that
maps the nonlinear PDE (3) to the linear PDE

W, —W, —W, = 0.



Example 2: Linearization of a Nonlinear Reaction-
Diffusion Equation

Consider the nonlinear reaction-diffusion equagoren by
u -u’u, —2u°=0. (1)

One can show that (1) does not admit linearizingtanct
symmetries and hence cannot be linearized by agrtible

transformation. Multiplying PDE (1) byu™ vyields the CL
D, (u™)+D, (u, +2x) =0,

and corresponding potential syst€u# O)

u—l
~(u, +2X) = —(u+x2),.

(2)

V, =
V, =



The nonlinear potential system (2) does not admit
linearizing point symmetries. However, since taeosd
PDE in (2) is written as a CL, one accordinglyaalinces a
second potential variable to obtain another nonlocally
related potential system

u
W, =V, (3)
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One can show that potential system (3) admits tinieg point
symmetries

X = e(W—xv){( F(t,v) — xH ('[,V))i
0X
+ (G(t,V) —2XF (t,V) + (X2 _U)H (t’V))aa_u

+(VF (V) - L+ xv)H (t,v»aiw},

where (F(t,v),G(t,v),H (t,v)) is an arbitrary solution of the

linear system
H,=F,

H, =G,
F,=G.
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Consequently, one can show that the point transfoom
1
Z =T,

7> =V,
wh = xe ™
w2 = (X% +u)e™™,

w? =e™ -1,
iInvertibly maps the nonlinear system of PDEs (3}h®e linear
system

ow
— =W,
0z°
ﬁzwl,
0z
6V\/3’=W2

oz
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Correspondingly, one can show that a solution
(w',w?,w®) z (00,—1) of this linear system yields the
corresponding solution

L WW D) — (W
(W’ +1)°

of the nonlinear reaction-diffusion equation (1).
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Example 3--Linearization of a Nonlinear Telegraph Equation
Consider the nonlinear telegraph equation
@=@) e +al-q). @)

One can show that PDE (1) does not admit contamtrsstries
yielding itslinearization by an invertible transformation.

Letu=@,v=¢. Then the corresponding PDE system

u=gq,
V=4, (2)
u, =u’v, +u(l-u),

IS equivalent to and locally related to the scBBE (1), and
hence (2) is not linearizable by an invertible sfanmation.
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Clearly, the nonlinear system (2) has a nonlocallgted
subsystem given by
u, =V,

(3)

u, =u’v, +u(l-u).

As previously shown, the nonlinear telegraph sygt&m
admits point symmetries yielding its linearizatimpa point
transformation. In turn, this yields the lineatiaa of the
nonlinear telegraph equation (1) by a non-invegtibl
(nonlocal) transformation.

Of course, one could consider the nonlinear systeRDES (3) as
the given system with nonlocally related potergigtem (2) arising
from its first equation written as a conservatiaw.l In turn, the
scalar equation (1) is a locally related subsysiéthe potential
system (2).
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NON-INVERTIBLE MAPPINGS OF LINEAR PDES
WITH VARIABLE COEFFICIENTSTO LINEAR
PDESWITH CONSTANT COEFFICIENTS

Previously, we considered the problem of deternginuhether or
not a given linear PDE with variable coefficienésxdoe mapped
invertibly to a linear PDE with constant coefficien

The basis of the presented algorithm was the ohgsenvthat a
linear PDE with constant coefficients is completehyaracterized
by its admitted point symmetries connected withintsarity and
invariance under the Abelian group of translatiohigs
Independent variables.

This led to a definitive answer to the posed pnobéend also to
the construction of such an invertible mapping wbea exists.
Parabolic equations were considered as specifimpbes.
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Now suppose a given linear PDE with variable cogdffits cannc
be mapped invertibly to a linear PDE with constamgfficients.

We now show how to construct non-invertible mappitmextend a
class of linear PDEs with variable coefficients tbah be mapped to
linear PDEs with constant coefficients.

This is accomplished through consideration of am@mpmate
potential system.

For any given linear PDE systeamy solution of its adjoint PDE
system yields a set of multipliers for a conseonrataw that yields
an equivalent nonlocally related potential system.

The aim is to find such a set of multipliers so tifwat corresponding
potential system can be mapped invertibly intonadr PDE system
with constant coefficients..
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As a consequence the given linear PDE system igathpon-
invertibly into a constant coefficient linear PD¥stem.

EXAMPLE: PARABOLIC EQUATION
Let the given PDE be the parabolic PDE in the shamdiorm:

Lu=u, +u, +V(x,y)u=0. (1)

PDE (1) can be mapped invertibly by a point transiation to
the backward heat equation

W, +W, =0
If and only if V(x,y) is of the form

V(x,y) =a(y)x* +b(y)x+c(y)
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The point transformation that yields the mappingiven
by

z = a(y)x+p(y),

7 = [ a*(9)dy,

w=uexpi[o o’ (y)x* +2070 (y)x + ()],

where(a(y), p(y),A(y)) is a solution of the nonlinear
system of ODEs

o (o0" -20'%) = 4a(y),

(gp" -20p') = 20°h(y), (2)
A'=07(p'* -200") +c(y).
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A multiplier ¢(x,y) yields a CL of PDE (1) if and only if
@(X,Y) is a solution of its adjoint PDE

Lo=g, -@ +V(xy)p=0. (3

In particular, for arbitrary function®J (X, y), ®(X, y)), one has the
relationship

dLU -UL®
=®U,, +U, +V (X, )U]-U[D, ~ D +V(X,y)P]
=D, (®U, -d U)+D, (DU).
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Consequently, foany solution¢(x, y) of the adjoint

equation (3), the given linear parabolic scalar RDDES
nonlocally equivalent to the corresponding lineateptial
system

qu,

U (4)
vV, =gu—aqu,.

By direct calculation, one can prove the followggended
theorem.
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Theorem. Let ¢/(X, y)be any solution of the PDE
Y+, +[a(y)x* +b(y)x+c(y)ly =0,

for some specific coefficien&(y),b(y),c(y). Let @®x,y) =¢ ™.
For the same coefficien&y),b(y),c(y), consider the
parabolic PDE1) with

2

V(x,y) = -Z%log | @x,y) | +a(y)x* +b(y)x+c(y), (5)

The corresponding potential systé can be mapped
iInvertibly by a point transformation to the backd/weat
potential system

ﬁzwl,
0z
ow’ __ow'

FEa
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Such a mapping is given by
z = o(y)x+ p(y),
Z=[ (9,
w =g u+ (1o (0 (y)x+ ()~ )
W2 — eg(X,Y)W’

where(a(y), p(y),A(Y)) is a solution of the nonlinear
system of ODE$2) and

g(x,y) =3[0’ ()x* + 207 p'(y)x+ A(Y)]

(6)
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Such a mapping is given by
z = o(y)x+ p(y),
Z=[ (9,
w =g u+ (1o (0 (y)x+ ()~ )
W2 — eg(X,Y)W’

where(a(y), p(y),A(Y)) is a solution of the nonlinear
system of ODE$2) and

g(x,y) =3[0’ ()x* + 207 p'(y)x+ A(Y)]

(6)
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The mapping (6) defines a point transformationngcan
(x,t,u,v)-space that projects onto a nonlocal

transformation acting o(x,t,u)-space if the coefficient of
Vv is nonzero in the third equation of the mapping.

It is easy to see that the mapping (6) yields dauah
transformation of PDE (1) witV(x,y) of the form (5),
and with V (X, y) not quadratic inx, if and only if @&(X,y)
satisfies the condition

5

0
——Ilo X, 0.
W gl y)|#
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Let ¢J(Z',z°) be any solution of the backward heat
equationy ., +¢ , =0.

Then from the first set of mapping equations ildak
that

W(xy)=(z,z,)exp{-i[o0'(y)x* + 207 p'(y)x + A(Y)]}

IS a solution of the corresponding parabolic PD&g a
accordinglyV (x,y) given by equation (5) becomes
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V(x y) = a(y)x’ +b<y)x+c(y)—2a{‘f; *@j }—ffg)) )

whereZz' = g(y)x+ p(y),z° = jyaz(y)dy, with a(y), p(y) related to
a(y),b(y) through the first two of ODESs of system (2).
Henceevery solution of the backward heat equation yields a

coefficient V(x,y) given by (7) for which the corresponding
parabolic PDE (1) can be mapped to the backwarddugation.
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Theorem. Letw=¢(zZ",z°) be a solution of the backward heat
equationw,, +w, =0. Such a solution yields a coefficient

V(X,Y) given by(7). The corresponding parabolic PIDE can
be mapped to the backward heat equation only tlhroag
nonlocal transformation if and only iff(z',z%) is not one of
the forms

(I) lﬁ(Zl, ZZ) — e(le—(P)Zzz)’

1 (21_21)2}

2 _ 52 ex 4 2 _ 52y [’
(2% - 2%) (2 -29)

I @z,z°)=

whereP, 2", 2° are arbitrary constants.
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