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Construction of Non-Invertible Mappings Relating PDEs

One can use nonlocally related systems to extend work on
invertible mappings of given PDEs to ones of simpler type
that can draw on an arsenal of well-known solution
techniques.

In particular, one can find useful nonlocal mappings relating
equivalent PDEs through the use of nonlocally related
potential systems.

Firstly, it is shown how to extend the invertible mapping
algorithms (based on symmetries or CL multiplers) to
nonlocal mappings of nonlinear PDEs to linear PDEs.
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Secondly, it is shown how to extend the invertible mapping
algorithm to nonlocal mappings of linear PDEs with variable
coefficients to linear PDEs with constant coefficients.

Here, one uses the fact that any solution of the adjoint PDE of a
given linear PDE yields a multiplier for a conservation law of the
given PDE and correspondingly a nonlocally related linear
potential system of the given PDE.

The aim is to find such a multiplier that yields an invertible
mapping of its corresponding nonlocally related linear system to a
constant coefficient linear system.

In turn this yields a non-invertible (nonlocal) mapping of the given
linear PDE with variable coefficients to an equivalent linear PDE
with constant coefficients.
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NON-INVERTIBLE MAPPINGS OF NONLINEAR SYSTEMS
OF PDES TO LINEAR SYSTEMS OF PDES

Suppose a given nonlinear system of PDEs does not admit local
(point or contact) symmetries (or, equivalently, does not admit
multipliers for  conservation laws) that yield an invertible mapping to
a linear system of PDEs.

However, it could happen that a nonlocally related equivalent
nonlinear system of PDEs does admit an infinite set of local
symmetries (multipliers for conservation laws) that yield an invertible
mapping of the nonlocally related system to some linear system of
PDEs.

Consequently, one obtains a nonlocal (non-invertible) mapping of the
given nonlinear system of PDEs to an equivalent linear system of
PDEs.
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Example 1: Linearization of the Thomas Equations

The nonlinear system of Thomas equations given by
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 describes a fluid flow through a reacting medium. Since (1) does  not
admit an infinite number of point symmetries, for sure it cannot be
linearized by a point transformation.  From the first equation of (1), a
corresponding potential system  is given by
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One can show that potential system (2) admits the point
symmetries
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where )),(),,(),,(( txHtxGtxF  is an arbitrary solution of
the linear system of PDEs given by
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Hence one obtains the point transformation
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that 1:1 maps nonlinear system (2) to linear system
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Consequently, one finds that the solutions
)),(),,(),,(( 213212211 zzwzzwzzw of the linear system

yield all solutions, given by
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       of the Thomas equations (1).
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From the form of the infinitesimal generator, it follows
that the locally related subsystem of (2), given by
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admits the linearizing point symmetries 
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      where  F(x,t)  is any solution of the linear PDE
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      In particular, one obtains the point transformation weW −=  that
maps the nonlinear PDE (3) to the linear PDE
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Example 2: Linearization of a Nonlinear Reaction-
Diffusion Equation

Consider the nonlinear reaction-diffusion equation given by
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One can show that (1) does not admit linearizing contact
symmetries and hence cannot be linearized by an invertible
transformation.  Multiplying PDE (1) by   2−u  yields the CL
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The nonlinear potential system (2) does not admit
linearizing point symmetries.  However, since the second
PDE in (2) is written as a CL, one accordingly introduces a
second potential variable w to obtain another nonlocally
related potential system
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One can show that potential system (3) admits linearizing point
symmetries
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where )),(),,(),,(( vtHvtGvtF  is an arbitrary solution of the
linear system
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Consequently, one can show that the point transformation
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invertibly maps the nonlinear system of PDEs (3) to the linear
system
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Correspondingly, one can show that a solution
)1,0,0(),,( 321 −≠www  of this linear system yields the

corresponding solution
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Example 3--Linearization of a Nonlinear Telegraph Equation

Consider the nonlinear telegraph equation
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One can show that PDE (1) does not admit contact symmetries
yielding its linearization by an invertible transformation.
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is equivalent to and locally related to the scalar PDE (1), and
hence (2) is not linearizable by an invertible transformation.
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Clearly, the nonlinear system (2) has a nonlocally related
subsystem given by
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As previously shown, the nonlinear telegraph system (3)
admits point symmetries yielding its linearization by a point
transformation.  In turn, this yields the linearization of the
nonlinear telegraph equation (1) by a non-invertible
(nonlocal) transformation.

Of course, one could consider the nonlinear system of PDEs (3) as
the given system with nonlocally related potential system (2) arising
from its first equation written as a conservation law.  In turn, the
scalar equation (1) is a locally related subsystem of the potential
system (2).
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NON-INVERTIBLE MAPPINGS OF LINEAR PDES
WITH VARIABLE COEFFICIENTS TO LINEAR

PDES WITH CONSTANT COEFFICIENTS

Previously, we considered the problem of determining whether or
not a given linear PDE with variable coefficients can be mapped
invertibly to a linear PDE with constant coefficients.

The basis of the presented algorithm was the observation that a
linear PDE with constant coefficients is completely characterized
by its admitted point symmetries connected with its linearity and
invariance under the Abelian group of translations of its
independent variables.

This led to a definitive answer to the posed problem and also to
the construction of such an invertible mapping when one exists.
Parabolic equations were considered as specific examples.
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Now suppose a given linear PDE with variable coefficients cannot
be mapped invertibly to a linear PDE with constant coefficients.

We now show how to construct non-invertible mappings to extend a
class of linear PDEs with variable coefficients that can be mapped to
linear PDEs with constant coefficients.

This is accomplished through consideration of an appropriate
potential system.

For any given linear PDE system, any solution of its adjoint PDE
system yields a set of multipliers for a conservation law that yields
an equivalent nonlocally related potential system.

The aim is to find such a set of multipliers so that the corresponding
potential system can be mapped invertibly into a linear PDE system
with constant coefficients..
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As a consequence the given linear PDE system is mapped non-
invertibly into a constant coefficient linear PDE system.

EXAMPLE: PARABOLIC EQUATION

Let the given PDE be the parabolic PDE in the standard form:

.0),(L =++= uyxVuuu yxx       (1)

PDE (1) can be mapped invertibly by a point transformation to
the backward heat equation
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The point transformation that yields the mapping is given
by
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A multiplier ),( yxφ  yields a CL of PDE (1) if and only if
),( yxφ  is a solution of its adjoint PDE
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In particular, for arbitrary functions )),,(),,(( yxyxU Φ  one has the
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Consequently, for any solution ),( yxφ  of the adjoint
equation (3), the given linear parabolic scalar PDE (1) is
nonlocally equivalent to the corresponding linear potential
system
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By direct calculation, one can prove the following extended
theorem.
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Theorem. Let ),( yxψ be any solution of the PDE

                       ,0)]()()([ 2 =++++ ψψψ ycxybxyayxx

for some specific coefficients ).(),(),( ycybya  Let .),( 1−=ψφ yx
For the same coefficients ),(),(),( ycybya  consider the
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The corresponding potential system (4) can be mapped
invertibly by a point transformation to the backward heat
potential system
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Such a mapping is given by
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where ))(),(),(( yyy λρσ  is a solution of the nonlinear
system of ODEs (2) and
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Such a mapping is given by

         
( ){ }

,

,))()((

,ˆ)ˆ(

),()(

),(2

11
2
1),(11

22

1

vew

vyxyuew

ydyz

yxyz

yxg

x
yxg

y

ψ
ψψψρσσσ

σ

ρσ

=

−′+′+=

=

+=

−−−

∫    (6)

where ))(),(),(( yyy λρσ  is a solution of the nonlinear
system of ODEs (2) and
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The mapping (6) defines a point transformation acting on
),,,( vutx -space that projects onto a nonlocal

transformation acting on ),,( utx -space if the coefficient of
v is nonzero in the third equation of the mapping.

It is easy to see that the mapping (6) yields a nonlocal
transformation of PDE (1) with  V(x,y)  of the form (5),
and with  ),( yxV  not quadratic in  x, if and only if  ),( yxφ
satisfies the condition
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Let ),(ˆ 21 zzψ  be any solution of the backward heat
equation .0ˆˆ 211 =+

zzz
ψψ

Then from the first set of mapping equations it follows
that
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is a solution of the corresponding parabolic PDE, and
accordingly, ),( yxV  given by equation (5) becomes
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)(),( ybya  through the first two of ODEs of system (2).

Hence every solution of the backward heat equation yields a
coefficient  V(x,y)  given by (7) for which the corresponding
parabolic PDE (1) can be mapped to the backward heat equation.
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Theorem.  Let ),(ˆ 21 zzw ψ=  be a solution of the backward heat
equation .0211 =+

zzz
ww  Such a solution yields a coefficient

),( yxV  given by (7).  The corresponding parabolic PDE (1) can
be mapped to the backward heat equation only through a
nonlocal transformation if and only if  ),(ˆ 21 zzψ  is not one of
the forms
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where 21 ˆ,ˆ, zzP  are arbitrary constants.
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