General Introduction

These Moscow lectures are concerned with some moder
developments related to symmetries and conservéioa (CLS)
for partial differential equations (PDES).

They will focus on recent research of B and hisadmrators.

Most of the material appears in the 2010 Springeokb
Applications of Symmetry Methods to Partial Diffargal
Equations (Bluman/Cheviakov/Anco), Volume 168 Appl. Math.
Sciences.



In the latter part of the Y9century, Sophus Lie initiated his
studies on continuous groups (Lie groups) in otdgwut order to,
and thereby extend systematically, the hodgepodgkearistic
techniques for solving ODEs.

What Lie showed



*the problem of finding the Lie group of point tisformations
leaving invariant a DE ppint symmetryof a DE), reduces to
solving related linear systems of determining eiguat for the
coefficients (nfinitesimals) of its infinitesimal generators

*a point symmetry of an ODE leads teducing the order of an
ODE (irrespective of any imposed initial conditipns

*a point symmetry of a PDE leads to finding spe@alutions
calledinvariant (similarity) solutions

*a point symmetry of a DE generate®me-parameter family of
solutions from any known solution of the DE that is not an
iInvariant solution.



Limitations of Lie’s work

*restricted number of applications for point symmnes, especially
for PDE systems

*few DEs have point symmetries
*the invariant solutions arising from point symmesryield only a
small subset of the solution set of the PDE anccé&daw posed

boundary value problems can be solved.

-difficulty of finding point symmetries



Extensions of Lie’s work on PDEs since
end of 19" century

*finding further applications of point symmetrie® tinclude
linearizationsand solutions of boundary value problems

*extending the spaces of symmetries of a given Rp&iem to
Include local symmetries(higher-order symmetriegsas well as
nonlocal symmetries

*extending the applications of symmetries to ine€lwariational
symmetries thayield conservation lawdgor variational systems



*extending variational symmetries tmultipliers and resulting
conservation lawfor any given PDE system

*finding further solutions that arise from the exteon of Lie’s
method to the ronclassical method as well as other
generalizations

*efficiently solving the (overdetermined) linear stgm of
symmetry and/or multiplier determining equationgotiyh the
development of symbolic computation software ad aglrelated
calculations for solving the nonlinear system oftedaining
equations for the nonclassical method.



What Is a symmetry of a PDE system and
how to find one?

A symmetryof a PDE system is any transformation of its sotut
manifold into itself, i.e.,a symmetry transforms (maps) any
solution of a PDE system to another solution of the same system.

Hence continuous symmetries of PDE systems areneatefi
topologicallyand not restricted to just point symmetries.

In principle,any nontrivial PDE has symmetries.

The problem is tdind and usethe symmetries of a given PDE
system.



Practically, to find symmetries of a given PDE system, one
considers transformations, actitagally on variables of finite-
dimensional spacewhich leave invariant the solution manifold of
the PDE system and ithfferential consequences

However, these variables do not have to be restridob the
iIndependent and dependent variables of the given $Stem.



Higher-order symmetries

Higher-order symmetries(local symmetries arise when the
solutions of the linear determining equations fofinitesimals
depend on a finite number of derivatives of depanhdariables of
the PDE (infinitesimals fopoint symmetriesallow at most linear
dependence on first derivatives of dependent viasab
Infinitesimals forcontact symmetriesllow arbitrary dependence
on at most first derivatives of dependent varigbles

In making this extension, it is essential to realihat thelinear
determining equationsfor local symmetries are thenearized
systenof the given PDE that holds fafl of its solutions.



Globally, point and contact symmetries act on finite-dinnemes
spaces Wwhereas higher-order symmetries act on it@fin
dimensional spaces consisting of the dependentiradependent
variables as well aall of their derivatives.

Well-known integrable equations of mathematical gty such as

the Korteweg-de-Vries equation have arfinite number of
higher-order local symmetries
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Nonlocal symmetries

Another extension is to consider solutions of thetedmnining
equations where infinitesimals have ad-hoc dependence on
nonlocal variables such as integrals of the dependent variables.

For some PDEs, such symmetries can be found formiabugh
recursion operatorghat depend on inverse differentiation.

Integrable equations such as the sine-Gordon andic cu

Schrodinger equations have @finite number of such nonlocal
symmetries
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CLs through variational symmetries
(Noether’'s theorem)

In her celebrated 1918 paper, Emmy Noether shohatifta DE
system admits a variational principle then any local
transformation group leaving invariant the actiomegral for its
Lagrangian density, i.e., @ariational symmetry yields alocal
conservation law

Conversely, any local CL of\ariational DE systenmarises from a
variational symmetry, and hence there is a directespondence
between CLs and variational symmetries (Noethbesitem).
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Limitations of Noether’s theorem

*restricted to variational systemsA given DE systenas written
must be ofeven ordey have the same number of dependent
variables as the number of equations in the giveystem and
haveno dissipation

*In particular, a given DE systemas written is variational if and
only if its linearized system self-adjoint

*difficulty of finding local symmetries of the acim integral. In
general, not all local symmetries of a variatiobdd system are
variational symmetries.

* use of Noether's theorem to find local consematlaws is
coordinate-dependent.
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Direct method for finding CLs

A CL of a given DE system is divergence expressionhat
vanishes on all solutions of the DE system.

Local CLs arise from scalar products formed by dme
combinations oflocal multipliers, functions of independent and
dependent variables and their derivatives with eBéh in the
system.

This scalar product is annihilated by tHeuler operators
associated with each of its dependent variablesowttrestricting
these variables in the scalar product to solutmnthe system of
PDEs, i.e., the dependent variables are admtrary functions.
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If a given DE system, as written, Is variationaerihlocal CL
multipliers correspond to variational symmetries.

Here local CL multipliers satisfy a system of datging
equations that includes the linearizing systemh&f given DE
systemaugmented by additional determining equatiotisat taken
together correspond to the action integral beingniant under the
associated variational symmetry.

More generally, foany given DE system, all local CL multipliers

are the solutions of an easily found linear detemg system that
Includes theadjoint systenof the linearizing DE system.
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For any set of local CL multipliers, one can eitdeectly find the
fluxes and density of the corresponding local CH,anthis proves
difficult, there is anntegral formula that yields them without the
need of a specific functional (Lagrangian) evertha case when

the given DE system is variational.
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Mappings

Another important application of symmetries for PDE to
determine whether or not a given PDE can be mappedsome
equivalent target PDE of interest.

This Is especially significant i& target class of PDEs can be
completely characterized in terms of its symmetries

Target classesvith such complete characterizations incllidear
PDE systemandlinear PDEs with constant coefficients
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From knowledge of the point or contact symmetriésa ajiven
nonlinear PDE systempne can determine whether it can be
mapped invertibly to a linear PDE system by a point or contact
transformation and find such an explicit mapping when one exists.

Moreover, one can also see whether such a lingianzig possible
from knowledge of the locaCL multipliers of a given PDE
system.

From knowledge of the point symmetries of a liIn€&E with
variable coefficientspne can determine whether it can be mapped
by an invertible point transformation to a linear PDE with
constant coefficients and find such an explicit mapping when one
exists.

18



Systematic procedure to find nonlocal
symmetries through nonlocally related
systems

To apply symmetry methods to PDE systems, one reaasrk in
some specific coordinate frame in order to perfoaiculations.

A procedure to find symmetries that ax@nlocal and yet are local
In some related coordinate frame involeaskhedding a given PDE
system in another PDE system obtained by adjoimaglocal
variables in such a way that the related PDE sysseaguivalent
to the given system and the given system arisesigiw projection.
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Consequently, any local symmetry of the relatedesgsyields a
symmetry of the given system (converse also holds).

If the local symmetry of the related system has essential
dependence on the nonlocal variables after projctthen it
yields anonlocal symmetnof the given PDE system.

A systematic way to find such an embedding is thholocal CLs
of a given PDE system. For each local CL, one cdwroduce a
potential variable(s).

By adjoining the resulting potential equations be given PDE

system, one can construct amgmented system (potential system
of PDEs.
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By construction, such a potential system is nonlp@muivalent to
the given PDE system since, through built imtegrability
conditions, any solution of the given PDE system yields aitsoh
of the potential system.

Conversely, through projection any solution of plmeential system
yields a solution of the given PDE system.

But this relationship is nonlocal since there is not a one-to-one

correspondence between solutions of the given am@npal
systems.
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If a local symmetry of the potential system has emsential
dependence on the potential variables when prajdoctéhe given
system, then it yields @onlocal symmetry (potential symmetry of

the given PDE system.

It turns out that many PDE systems have potentrahsetries.

Moreover, one can find other nonlocal symmetriea gfven PDE
system through seeking local symmetries of eguivalent
subsystem of the given system or one of its potential systems
provided that such a subsystem is nonlocally rdlatethe given
PDE system.
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Applications of potential systems and
nonlocally related subsystems

*Invariant solutions of potential systems and subsystems can yield
further solutions of the given PDE system.

*Since a potential symmetry is a local symmetryaopotential
system, it generates a one-parameter family oftisolsi from any
known solution of the potential system that in tyralds a one-
parameter family of solutions from a known solutmithe given
PDE system. Similarly, this is the case for a noal symmetry
arising from a subsystem.
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*Local CLs of potential systems can yield nonloCdls of a given
PDE system if their local CL multipliers have anseial
dependence on potential variables.

*Linearizations of potential systems through losginmetry or
local CL multiplier analysis can vyield explicinonlocal
linearizationsof a given PDE system.

*Through a potential system one can extend the mgppf linear

systems with variable coefficients to linear sysemth constant
coefficients to includ@onlocal mappingdetween such systems.
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Further Extensions

*One can further extend embeddings through usingl IGts to
systematically construttees of nonlocally related but equivalent
systems of PDEs.If a given PDE system haslocal CLs, then
each CL yields potentials and corresponding paéesyistems.

*From the n local CLs, one can directly construct up 26—-1

iIndependent nonlocally related systems of PDEsomgidering the
corresponding potential systems individualtydingletg, in pairs
(n(n — 1)/2couplety,..., taken all togethewfe n-plej.

*Any of these2" -1 systems could lead to the discovery of new
nonlocal symmetries and/or nonlocal CLs of the giP®E system
or any of the other nonlocally related systems.
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*Such nonlocal CLs could yield further nonlocaltated systems,
etc.

*Subsystems of such nonlocally related systemsdcpigld further
nonlocally related systems.

*Correspondingly,a tree of nonlocally related systemss
y
constructed.
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The situation in the case afhulti-dimensional PDE systems is
especially interesting.

Here one can show that nonlocal symmetries andonahICLs
cannotarise from potential systems unless they are autpddry
gauge constraints
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Applications

Through such constructions, one caystematically relate
Eulerian and Lagrangian coordinate descriptions of gas dynamics
and nonlinear elasticity.

A subsystem of the potential systems arising frgstesn written
In Eulerian coordinates (frontonservation of mags yields
corresponding systems in Lagrangian coordinates.

For a given class of PDEs wittonstitutive functions one finds

trees of nonlocally related systems yielding symmmastand CLs
with respect to various forms of its constitutive€tions.
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Comparing the number of local
symmetries and the number of CLs of a
given PDE system

When a DE system Mariational, i.e., itslinearized system is self-
adjoint, then local CLs arise from a subset of its logahimetries

and the number of linearly independent local ClLisnca exceed
the number of higher-order symmetries.

In general, thiswill not be the case when a system is not
variational.

Here a given DE system can hawere local conservation laws
than local symmetries as well as vice versa.
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Symmetries mapping CLs to new CLs

For any given PDE system, a transformation graamt{nuousor
discretg that leaves it invariant yields an explicit forilmuhat
maps a CL to a CL of the same system, whether ptheogiven
system is variational.

If the group is continuous, then in terms of a paer expansion

a given CL can map intonore than one additional CL for the
given PDE system.
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Invariant solutions and generalizations

A point symmetry of a PDE system maps a solutioratone-
parameter family of solutions.

Solutions mapping into themselves are invariant.

Such solutions satisfy the characteristic PDE thdhe invariant
surface conditionyielding the invariants of the point symmetry.
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Invariant solutionsarising from point symmetries are the solutions
of the given PDE system that satisfy thegmented system
consisting of this characteristic PDE witnown coefficients
(obtained from the point symmetry) and the givenEP&ystem
itself.

Invariant solutions arise as solutions of a reduwedem with one
less independent variable.

This method is théclassical method” of Lie to find invariant
solutions of a given PDE system.
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“Nonclassical method”

Lie’s “classical method” generalizes to theonclassical method”

(B 1967) where one seeks solutions of an augmesystem

consisting of the given PDE system and the chamatte PDE

with unknown coefficientsas well aglifferential consequences of
the augmented system.

The unknown coefficients are determined by sulisiguthe

characteristic equation, and its differential causnces, into the
determining system for point symmetries of the aegied system.
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The resulting over-determined systemn@nlinear (even if the
given PDE system is linear) in these unknown coeffits, butess
over-determined than is the case when finding point symmetries of
the given PDE system.

Each solution of the determining system for poyrsietries is a
solution of the determining system for the unknaeefficients of
the characteristic PDE.

Solving for the unknown coefficients, one then geas to find the

correspondingnonclassical” solutions of the augmented system
that, by construction, include the classical inaarisolutions.
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The solutions of a PDE that can be obtained byniheclassical
method include all of its solutions that satisfy particular
functional form é&nsatz of some generality that allows an arbitrary
dependence onsamilarity variable (depending on the independent
and dependent variables of the PDE) and an anpitr@pendence
on a function of a similarity variable and the ipdadent variables
of the PDE.

The solutions obtained by the nonclassical methudude all
solutions obtained “directly” from such an ansaiz the direct
method(Clarkson and Kruskal,1988).
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Further extensions related to the classical andlassical methods
for finding solutions of PDEs include ansatzes esponding to
the generalized conditional “symmetry” (GCShnethod and the
method of obtainingonclassical potential solutions

These ansatzes are generalizations of the methiod®taining
iInvariant solutions from higher-order symmetriesd gootential
symmetries in the same way that the nonclassicathade
generalizes the method of obtaining invariant sohs from point
symmetries.

So far both of these ansatzes have not proven &s [@fective in
obtaining new solutions (especially new explicitusons) for

PDEs as Is the case for the ansatz correspondiihg taonclassical
method.
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Another related generalization to obtain furthdusons of PDEs
IS based ogroup-invariant foliation equationswvhere one forms a
group-resolving system after converting a given P an
equivalent first-order PDE system whose independant
dependent variables, respectively, are given bycthssical and

differential invariants of an admitted point symmnyedf the given
PDE.
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