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General Introduction 
 
These Moscow lectures are concerned with some modern 
developments related to symmetries and conservation laws (CLs) 
for partial differential equations (PDEs).   
 
They will focus on recent research of B and his collaborators.  
 
Most of the material appears in the 2010 Springer book 
Applications of Symmetry Methods to Partial Differential 
Equations (Bluman/Cheviakov/Anco), Volume 168 Appl. Math. 
Sciences. 
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 In the latter part of the 19th century, Sophus Lie initiated his 
studies on continuous groups (Lie groups) in order to put order to, 
and thereby extend systematically, the hodgepodge of heuristic 
techniques for solving ODEs.   
 

What Lie showed 
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*the problem of finding the Lie group of point transformations 
leaving invariant a DE (point symmetry of a DE), reduces to 
solving related linear systems of determining equations for the 
coefficients (infinitesimals) of its infinitesimal generators.   
 
*a point symmetry of an ODE leads to reducing the order of an 
ODE (irrespective of any imposed initial conditions)  
 
*a point symmetry of a PDE leads to finding special solutions 
called invariant (similarity) solutions.  
 
*a point symmetry of a DE generates a one-parameter family of 
solutions from any known solution of the DE that is not an 
invariant solution.  
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Limitations of Lie’s work 
 

*restricted number of applications for point symmetries, especially 
for PDE systems 
 
*few DEs have point symmetries 
 
*the invariant solutions arising from point symmetries yield only a 
small subset of the solution set of the PDE and hence few posed 
boundary value problems can be solved. 
 
*difficulty of finding point symmetries   
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Extensions of Lie’s work on PDEs since 
end of 19th century  
 
*finding further applications of point symmetries to include 
linearizations and solutions of boundary value problems  
 
*extending the spaces of symmetries of a given PDE system to 
include local symmetries (higher-order symmetries) as well as 
nonlocal symmetries  
 
*extending the applications of symmetries to include variational 
symmetries that yield conservation laws for variational systems 
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*extending variational symmetries to multipliers and resulting 
conservation laws for any given PDE system  
 
*finding further solutions that arise from the extension of Lie’s 
method to the “nonclassical method” as well as other 
generalizations  
 
*efficiently solving the (overdetermined) linear system of 
symmetry and/or multiplier determining equations through the 
development of symbolic computation software as well as related 
calculations for solving the nonlinear system of determining 
equations for the nonclassical method. 
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What is a symmetry of a PDE system and 
how to find one? 
 
A symmetry of a PDE system is any transformation of its solution 
manifold into itself, i.e., a symmetry transforms (maps) any 
solution of a PDE system to another solution of the same system.   
 
Hence continuous symmetries of PDE systems are defined 
topologically and not restricted to just point symmetries.   
 
In principle, any nontrivial PDE has symmetries.   
 
The problem is to find and use the symmetries of a given PDE 
system.  
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Practically, to find symmetries of a given PDE system, one 
considers transformations, acting locally on variables of a finite-
dimensional space, which leave invariant the solution manifold of 
the PDE system and its differential consequences.   
 
However, these variables do not have to be restricted to the 
independent and dependent variables of the given PDE system. 
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Higher-order symmetries 
 
Higher-order symmetries (local symmetries) arise when the 
solutions of the linear determining equations for infinitesimals 
depend on a finite number of derivatives of dependent variables of 
the PDE (infinitesimals for point symmetries allow at most linear 
dependence on first derivatives of dependent variables; 
infinitesimals for contact symmetries allow arbitrary dependence 
on at most first derivatives of dependent variables).   
 
In making this extension, it is essential to realize that the linear 
determining equations for local symmetries are the linearized 
system of the given PDE that holds for all of its solutions.   
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Globally, point and contact symmetries act on finite-dimensional 
spaces whereas higher-order symmetries act on infinite-
dimensional spaces consisting of the dependent and independent 
variables as well as all of their derivatives.  
 
Well-known integrable equations of mathematical physics such as 
the Korteweg-de-Vries equation have an infinite number of 
higher-order local symmetries. 
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Nonlocal symmetries   
 
Another extension is to consider solutions of the determining 
equations where infinitesimals have an ad-hoc dependence on 
nonlocal variables such as integrals of the dependent variables.   
 
For some PDEs, such symmetries can be found formally through 
recursion operators that depend on inverse differentiation.   
 
Integrable equations such as the sine-Gordon and cubic 
Schrodinger equations have an infinite number of such nonlocal 
symmetries. 
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CLs  through variational symmetries 
(Noether’s  theorem) 
 
In her celebrated 1918 paper, Emmy Noether showed that if a DE 
system admits a variational principle, then any local 
transformation group leaving invariant the action integral for its 
Lagrangian density, i.e., a variational symmetry, yields a local 
conservation law.    
 
Conversely, any local CL of a variational DE system arises from a 
variational symmetry, and hence there is a direct correspondence 
between CLs and variational symmetries (Noether’s theorem). 
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Limitations of Noether’s theorem 
* restricted to variational systems.  A given DE system as written, 
must be of even order, have the same number of dependent 
variables as the number of equations in the given system, and 
have no dissipation.  
 
*In particular, a given DE system, as written, is variational if and 
only if its linearized system is self-adjoint.  
 
*difficulty of finding local symmetries of the action integral.  In 
general, not all local symmetries of a variational DE system are 
variational symmetries.   
 
* use of Noether’s theorem to find local conservation laws is 
coordinate-dependent. 
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Direct method for finding CLs 
 
A CL of a given DE system is a divergence expression that 
vanishes on all solutions of the DE system.  
 
Local CLs arise from scalar products formed by linear 
combinations of local multipliers, functions of independent and 
dependent variables and their derivatives with each DE in the 
system.  
 
This scalar product is annihilated by the Euler operators 
associated with each of its dependent variables without restricting 
these variables in the scalar product to solutions of the system of 
PDEs, i.e., the dependent variables are now arbitrary functions.  
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If a given DE system, as written, is variational then local CL 
multipliers correspond to variational symmetries.  
 
Here local CL multipliers satisfy a system of determining 
equations that includes the linearizing system of the given DE 
system augmented by additional determining equations that taken 
together correspond to the action integral being invariant under the 
associated variational symmetry.   
 
More generally, for any given DE system, all local CL multipliers 
are the solutions of an easily found linear determining system that 
includes the adjoint system of the linearizing DE system.  
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For any set of local CL multipliers, one can either directly find the 
fluxes and density of the corresponding local CL and, if this proves 
difficult, there is an integral formula that yields them without the 
need of a specific functional (Lagrangian) even in the case when 
the given DE system is variational. 
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Mappings 
 
Another important application of symmetries for PDEs is to 
determine whether or not a given PDE can be mapped into some 
equivalent target PDE of interest.   
 
This is especially significant if a target class of PDEs can be 
completely characterized in terms of its symmetries.   
 
Target classes with such complete characterizations include linear 
PDE systems and linear PDEs with constant coefficients.   
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From knowledge of the point or contact symmetries of a given 
nonlinear PDE system, one can determine whether it can be 
mapped invertibly to a linear PDE system by a point or contact 
transformation and find such an explicit mapping when one exists. 
 
Moreover, one can also see whether such a linearization is possible 
from knowledge of the local CL multipliers of a given PDE 
system.  
 
From knowledge of the point symmetries of a linear PDE with 
variable coefficients, one can determine whether it can be mapped 
by an invertible point transformation to a linear PDE with 
constant coefficients and find such an explicit mapping when one 
exists. 
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Systematic procedure to find nonlocal 
symmetries through nonlocally related 
systems 
 
To apply symmetry methods to PDE systems, one needs to work in 
some specific coordinate frame in order to perform calculations. 
 
A procedure to find symmetries that are nonlocal and yet are local 
in some related coordinate frame involves embedding a given PDE 
system in another PDE system obtained by adjoining nonlocal 
variables in such a way that the related PDE system is equivalent 
to the given system and the given system arises through projection.  
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Consequently, any local symmetry of the related system yields a 
symmetry of the given system (converse also holds).   
 
If the local symmetry of the related system has an essential 
dependence on the nonlocal variables after projection, then it 
yields a nonlocal symmetry of the given PDE system. 

 
A systematic way to find such an embedding is through local CLs 
of a given PDE system. For each local CL, one can introduce a 
potential variable(s).   
 
By adjoining the resulting potential equations to the given PDE 
system, one can construct an augmented system (potential system) 
of PDEs.  
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By construction, such a potential system is nonlocally equivalent to 
the given PDE system since, through built in integrability 
conditions, any solution of the given PDE system yields a solution 
of the potential system. 
 
Conversely, through projection any solution of the potential system 
yields a solution of the given PDE system.  
 
But this relationship is nonlocal since there is not a one-to-one 
correspondence between solutions of the given and potential 
systems.   
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If a local symmetry of the potential system has an essential 
dependence on the potential variables when projected to the given 
system, then it yields a nonlocal symmetry (potential symmetry) of 
the given PDE system.   
 
It turns out that many PDE systems have potential symmetries.   
 
Moreover, one can find other nonlocal symmetries of a given PDE 
system through seeking local symmetries of an equivalent 
subsystem of the given system or one of its potential systems 
provided that such a subsystem is nonlocally related to the given 
PDE system.  
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Applications of potential systems and 
nonlocally related subsystems 
 
* Invariant solutions of potential systems and subsystems can yield 
further solutions of the given PDE system.  
 
*Since a potential symmetry is a local symmetry of a potential 
system, it generates a one-parameter family of solutions from any 
known solution of the potential system that in turn yields a one-
parameter family of solutions from a known solution of the given 
PDE system.  Similarly, this is the case for a nonlocal symmetry 
arising from a subsystem.  
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*Local CLs of potential systems can yield nonlocal CLs of a given 
PDE system if their local CL multipliers have an essential 
dependence on potential variables.   
 
*Linearizations of potential systems through local symmetry or 
local CL multiplier analysis can yield explicit nonlocal 
linearizations of a given PDE system.   
 
*Through a potential system one can extend the mappings of linear 
systems with variable coefficients to linear systems with constant 
coefficients to include nonlocal mappings between such systems.   
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Further Extensions 
 
*One can further extend embeddings through using local CLs to 
systematically construct trees of nonlocally related but equivalent 
systems of PDEs.  If a given PDE system has n local CLs, then 
each CL yields potentials and corresponding potential systems.  
 
*From the n local CLs, one can directly construct up to 12 −n  
independent nonlocally related systems of PDEs by considering the 
corresponding potential systems individually (n singlets), in pairs 
(n(n – 1)/2 couplets),…, taken all together (one n-plet).   
 
*Any of these 12 −n  systems could lead to the discovery of new 
nonlocal symmetries and/or nonlocal CLs of the given PDE system 
or any of the other  nonlocally related systems.   
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*Such nonlocal CLs could yield further nonlocally related systems, 
etc. 
 
*Subsystems of such nonlocally related systems could yield further 
nonlocally related systems.   
 
*Correspondingly, a tree of nonlocally related systems is 
constructed.   
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The situation in the case of multi-dimensional PDE systems is 
especially interesting.   
 
Here one can show that nonlocal symmetries and nonlocal CLs 
cannot arise from potential systems unless they are augmented by 
gauge constraints.   
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Applications 
 
Through such constructions, one can systematically relate 
Eulerian and Lagrangian coordinate descriptions of gas dynamics 
and nonlinear elasticity.   
 
A subsystem of the potential systems arising from system written 
in Eulerian coordinates (from conservation of mass) yields 
corresponding systems in Lagrangian coordinates. 
 
For a given class of PDEs with constitutive functions, one finds 
trees of nonlocally related systems yielding symmetries and CLs 
with respect to various forms of its constitutive functions.   
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Comparing the number of local 
symmetries and the number of CLs of a 
given PDE system 
 
When a DE system is variational, i.e., its linearized system is self-
adjoint, then local CLs arise from a subset of its local symmetries 
and the number of linearly independent local CLs cannot exceed 
the number of higher-order symmetries.   
 
In general, this will not be the case when a system is not 
variational.   
 
Here a given DE system can have more local conservation laws 
than local symmetries as well as vice versa.  
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Symmetries mapping CLs to new CLs  
 
For any given PDE system, a transformation group (continuous or 
discrete) that leaves it invariant yields an explicit formula that 
maps a CL to a CL of the same system, whether or not the given 
system is variational.   
 
If the group is continuous, then in terms of a parameter expansion 
a given CL can map into more than one additional CL for the 
given PDE system. 
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Invariant solutions and generalizations 
 
 
A point symmetry of a PDE system maps a solution to a one-
parameter family of solutions.   
 
Solutions mapping into themselves are invariant.   
 
Such solutions satisfy the characteristic PDE that is the invariant 
surface condition yielding the invariants of the point symmetry.   
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Invariant solutions arising from point symmetries are the solutions 
of the given PDE system that satisfy the augmented system 
consisting of this characteristic PDE with known coefficients 
(obtained from the point symmetry) and the given PDE system 
itself.  
 
Invariant solutions arise as solutions of a reduced system with one 
less independent variable.  
 
This method is the “classical method” of Lie to find invariant 
solutions of a given PDE system. 
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“Nonclassical method” 
 
Lie’s “classical method” generalizes to the “ nonclassical method” 
(B 1967) where one seeks solutions of an augmented system 
consisting of the given PDE system and the characteristic PDE 
with unknown coefficients as well as differential consequences of 
the augmented system.  
 
The unknown coefficients are determined by substituting the 
characteristic equation, and its differential consequences, into the 
determining system for point symmetries of the augmented system.   
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The resulting over-determined system is nonlinear (even if the 
given PDE system is linear) in these unknown coefficients, but less 
over-determined than is the case when finding point symmetries of 
the given PDE system.   
 
Each solution of the determining system for point symmetries is a 
solution of the determining system for the unknown coefficients of 
the characteristic PDE.    
 
Solving for the unknown coefficients, one then proceeds to find the 
corresponding “nonclassical” solutions of the augmented system 
that, by construction, include the classical invariant solutions. 
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The solutions of a PDE that can be obtained by the nonclassical 
method include all of its solutions that satisfy a particular 
functional form (ansatz) of some generality that allows an arbitrary 
dependence on a similarity variable (depending on the independent 
and dependent variables of the PDE) and an arbitrary dependence 
on a function of a similarity variable and the independent variables 
of the PDE.    
 
The solutions obtained by the nonclassical method include all 
solutions obtained “directly” from such an ansatz by the direct 
method (Clarkson and Kruskal,1988).  
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Further extensions related to the classical and nonclassical methods 
for finding solutions of PDEs include ansatzes corresponding to 
the generalized conditional “symmetry” (GCS) method and the 
method of obtaining nonclassical potential solutions.  
 
These ansatzes are generalizations of the methods of obtaining 
invariant solutions from higher-order symmetries and potential 
symmetries in the same way that the nonclassical method 
generalizes the method of obtaining invariant solutions from point 
symmetries.   
 
So far both of these ansatzes have not proven to be as effective in 
obtaining new solutions (especially new explicit solutions) for 
PDEs as is the case for the ansatz corresponding to the nonclassical 
method.    
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Another related generalization to obtain further solutions of PDEs 
is based on group-invariant foliation equations where one forms a 
group-resolving system after converting a given PDE into an 
equivalent first-order PDE system whose independent and 
dependent variables, respectively, are given by the classical and 
differential invariants of an admitted point symmetry of the given 
PDE.  

 


